
IBM Rational CLM 2012 OSLC
Workshop
Lab Exercises

An IBM Proof of Technology

Catalog Number

© Copyright IBM Corporation, 2010, 2013

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Contents
OVERVIEW...4

LAB 1 SETTING UP FOR OSLC DEVELOPMENT...5
1.1 DOWNLOAD AND INSTALL THE REQUIRED FILES FROM JAZZ.NET..5

1.2 SETUP A TOMCAT TEST SERVER..7

1.3 INSTALL THE REST CLIENT ADD-ON FOR MOZILLA® FIREFOX®...8

1.4 TEST THE REST CLIENT SETUP...9

1.5 TEST THE WTP AND TOMCAT SETUP...11

1.6 CREATE A DEFAULT PROJECT (OR REUSE AN EXISTING ONE!)..21

1.7 LOADING EXAMPLES..23

LAB 2 AN INTRODUCTION TO THE OSLC APIS..26
2.1 THE ROOT SERVICES DOCUMENT..27

2.2 THE REST CLIENT ADD-ON..32

2.3 OSLC-CM SERVICES..38

2.4 SEARCH FOR WORK ITEMS..44

LAB 3 ACCESS OSLC APIS PROGRAMMATICALLY...50
3.1 ACCESSING THE ROOT SERVICES DOCUMENT..50

3.2 RETRIEVE THE SERVICE PROVIDER CATALOG USING XPATH..57

3.3 JAZZ FORM-BASED AUTHENTICATION..61

3.4 WORK ITEM UPDATE..68

3.5 BUILD YOUR FIRST OSLC SERVLET...73

LAB 4 IMPLEMENTING THE OSLC APIS IN A SERVICE PROVIDER..84
4.1 SETTING UP THE SERVER RUNTIME ENVIRONMENT AND RUNNING THE SAMPLE SERVER...............................85

4.2 INTERACTING WITH THE SAMPLE PROVIDER..89

4.3 MODIFYING THE PROVIDER, ADDING ANOTHER DIALOG..90

4.4 TEST CHANGES..94

LAB 5 INTRODUCTION TO OSLC RM API..96
5.1 THE ROOT SERVICES DOCUMENT..97

5.2 OSLC-RM SERVICES..97

5.3 SEARCH FOR REQUIREMENTS..104

5.4 REQUIREMENT SELECTION DIALOG...109

5.5 CREATION DIALOG..110

5.6 APPENDIX...111

LAB 6 ACCESS OSLC RM APIS PROGRAMMATICALLY..113
6.1 ACCESSING THE ROOT SERVICES DOCUMENT..113

6.2 RETRIEVE THE SERVICE PROVIDER CATALOG USING XPATH...118

6.3 JAZZ FORM-BASED AUTHENTICATION..121

6.4 REQUIREMENT CREATE/MODIFY...129

5.7 QUERY137

5.8 CREATE OSLC S ERVLET FOR RM..141

APPENDIX A NOTICES..151
APPENDIX B TRADEMARKS AND COPYRIGHTS...153

Contents Page 3

IBM Software

Overview

Introduction

These labs will help guide you to leverage the Open Services for Lifecycle Collaboration (OSLC)
standard interfaces for interoperating with IBM Rational Team Concert as well as other Jazz-based
products. These labs will highlight key aspects by leveraging web browser access and programmatic
access via Java client programs. The final lab will illustrate by an example how to write your own server
using Java servlets. After you complete these labs, you will have a good foundation by which to leverage
OSLC to implement in your interoperability project.

Icons

The following symbols appear in this document at places where additional guidance is available.

Icon Purpose Explanation

Important!
This symbol calls attention to a particular step or command. For
example, it might alert you to type a command carefully because
it is case sensitive.

Information This symbol indicates information that might not be necessary to
complete a step, but is helpful or good to know.

Trouble-
shooting

This symbol indicates that you can fix a specific problem by
completing the associated troubleshooting information.

Page 4

IBM Software

Lab 1 Setting up for OSLC Development

Lab Scenario
You have a new assignment on a team to integrate two Application
Lifecycle Management (ALM) tools using OSLC. The first thing to do is to
learn how to use OSLC services and how to provide your own OSLC
services. This workshop will help you do just that.
Once you have completed this module, you will be ready to start
developing OSLC integrations.

In order to complete and get the most out of this workshop, it is
recommended that you are already familiar with RTC as a user. Of
particular help would be familiarity with work items. In addition, you should
have basic familiarity with Java programming and debugging using
Eclipse. Note that OSLC can be used from any programming language
that can invoke or provide web services and not just Java; however, the
examples in this workshop are written in Java.

Note that these instructions are written specifically for RTC 4.0 on
Windows. Please adjust accordingly for different operating systems
(primarily the Eclipse client download and the file paths) and RTC
versions (downloads).

Along with this lab document(s), you should have received or downloaded
a file with a name YYYY-MM-DD-oslc-workshop.zip. It is an exported
set of Eclipse projects containing the code we will use in the Labs. You
will import it at the end of this lab.

1.1 Download and Install the Required Files from jazz.net

For supporting sections, use this format. Replace the heading above with your own title, and then add an
introduction. If you need to add steps, copy and paste the step list below.

__1. Download Rational Team Concert 4.0 (https://jazz.net/downloads/rational-team-
concert/releases/4.0) and follow the Getting Started (https://jazz.net/downloads/rational-team-
concert/releases/4.0?p=gettingStarted) instructions to install it and setup properly:

 Jazz Team Server, CCM Application, RM Application

 Client for Eclipse IDE

Lab 1 Page 5

https://jazz.net/downloads/rational-team-concert/releases/4.0?p=gettingStarted
https://jazz.net/downloads/rational-team-concert/releases/4.0?p=gettingStarted
https://jazz.net/downloads/rational-team-concert/releases/4.0
https://jazz.net/downloads/rational-team-concert/releases/4.0

IBM Software

__2. Add the Eclipse Web Tools Platform (WTP) to the RTC client.

__a. Start the RTC Eclipse client (<TeamConcert_Root_Folder> \eclipse.exe).

__b. When prompted, select an Eclipse workspace. These instructions will use
C:\RTC40Dev\DevWS.

__c. Minimize the Welcome via this () button near the top of the window.

__d. From the menu bar, select Window > Preferences

__e. In the left column select the item Install/Update > Available Software Sites

In the Available Software Sites view, select http://download.eclipse.org/releases/helios ,
then click OK.

__f. Close the Preferences dialog.

__g. From the menu bar, select Help > Install New Software…

Page 6

http://download.eclipse.org/releases/helios

IBM Software

__h. In the Available Software dialog, select in the Work with: field, the item
“http://download.eclipse.org/releases/helios”

Be patient, the first time, this request might take several minutes ….

__i. Group listed items by Category and select the features: Web, XML, and Java EE
Development

__j. Press Next.

__k. Eclipse calculates the dependencies and shows you the features it will install. Click Next
in the Install wizard.

__l. On the second page of the Install wizard, select I accept the terms of the license
agreements (read them first if you wish) and then click Finish.

__m. When prompted to restart Eclipse, click Yes.

1.2 Setup a Tomcat Test Server

__1. This server will be used to run the OSLC provider sample. Download a Tomcat 6.0.xx Tomcat
server from http://tomcat.apache.org/download-60.cgi or one of the mirrors.

__2. Unzip the downloaded apache-tomcat-6.0.xx.zip file. This workshop will assume the file is
unzipped to the root of the C: drive. This will create the folder C:\ apache-tomcat-6.0.xx that
contains the server.

__3. Running Tomcat.

__a. If you have a J2SE 5 or higher JRE installed as your default JRE, Tomcat should be
ready to run. From Windows explorer, simply double click the startup.bat and
shutdown.bat files found in C:\apache-tomcat-6.0.xx\bin.

__b. Alternatively, you can download a J2SE 5 or higher JRE (or JDK), unzip it and then set
the JAVA_HOME variable before starting Tomcat. For example:

__i. Download a J2SE 5 JDK and unzip it to C:\J2SE5

__ii. Create a SetTomcatEnv.bat file with the single line:
set JAVA_HOME=C:\J2SE5

__iii. Open a command prompt and run this bat file and then start and stop Tomcat
from that same command prompt. You can run any of the other Tomcat
commands from the same prompt.

Lab 1 Page 7

http://tomcat.apache.org/download-60.cgi
http://download.eclipse.org/releases/galileo

IBM Software

__c. Another alternative is to make a small addition to the startup and shutdown bat files
found in C:\apache-tomcat-6.0.xx\bin.

__i. Download a J2SE 5 JDK and unzip it to C:\J2SE5

__ii. In both the startup.bat and shutdown.bat files, add the following lines near the
top of the files (just after the opening block comment).

rem JAVA_HOME check
if not "%JAVA_HOME%" == "" goto gotJavaHome
set JAVA_HOME=C:\J2SE5
:gotJavaHome

__iii. From Windows explorer, simply double click the startup.bat and shutdown.bat
files to start and stop Tomcat.

__4. This workshop will assume that Tomcat can be started or stopped simply by double clicking the
start or stop bat file from Windows explorer. That is, either 3.a or 3.c above is true.

1.3 Install the REST Client Add-on for Mozilla® Firefox®

__1. This workshop is written assuming Mozilla Firefox and the REST Client add-on. If you can not
use Mozilla Firefox, alternatives would include the cURL command line tool (http://curl.haxx.se/)
or a standalone application (http://jamescrisp.org/2008/08/08/simple-rest-client/). Add-ons for
other browsers may also exist.

There also exist the HttpRequester add-on which the RM team uses and released as an add-on.
It can be downloaded from here: https://addons.mozilla.org/en-US/firefox/addon/httprequester/

__2. If you do not already have Mozilla Firefox installed, go to http://www.mozilla.com/firefox/,
download version 3.6 or above and follow the installation instructions.

__3. Start Mozilla Firefox, go to this page (https://addons.mozilla.org/en-US/firefox/addon/restclient/),
click the Add to Firefox button and follow the instructions, including the restart of Mozilla
Firefox.

Page 8

https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://www.mozilla.com/firefox/
https://addons.mozilla.org/en-US/firefox/addon/httprequester/
http://jamescrisp.org/2008/08/08/simple-rest-client/
http://curl.haxx.se/

IBM Software

1.4 Test the REST Client Setup

__1. Start your Jazz Team Server and recall the public URI (root of all the URLs) you have set during
the setup process. We will use in later steps the following public URI as the example:
https://jazz.server.com:9443/jts

__a. In the Windows Explorer, navigate to the <JazzTeamServer_Root_Folder>\server
folder.

__b. Double click the server.startup.bat file to start the server.

__2. Open Mozilla Firefox and, from the menu bar, select Tools > REST Client. It will open a new
REST Client for Firefox tab.

Lab 1 Page 9

https://jazz.server.com:9443/jts

IBM Software

__3. Select the GET method from the combo-box and type the URL:
https://jazz.server.com:9443/jts /rootservices and then press Send. The Response Header
should show in green that the Status Code is “200 OK”.

Page 10

https://jazz.server.com:9443/jts

IBM Software

__4. Switch to the Response Body (Preview) tab to see the content of the response. It will be an
XML stream describing the root services of your Jazz Team Server.

__5. If you have reached this step then it means that the add-on is functioning correctly.

1.5 Test the WTP and Tomcat Setup

__1. Create a Tomcat Server definition.

__a. For the OSLC Producer workshop, you will use the Web Tool Platform and deploy your
code against the Apache Tomcat application server. You will test the configuration now.

__b. If the RTC client with WTP is not still running, start It now.

__c. Open the Java EE perspective.

Lab 1 Page 11

IBM Software

__d. From the menu bar select File > New > Other… then in the New wizard, type server in
the filter, select Server from the list and then click Next.

__e. On the second page of the wizard, expand the Apache tree, select Tomcat v6.0 Server
and then click Next.

Page 12

IBM Software

__f. On the final page of the wizard, specify where you have unzipped Tomcat (use the
Browse… button) and press Finish.

If you already have installed Tomcat in the Eclipse workspace then this
wizard page will not show up.

__g. A project (named Servers) is created to contain your server definitions. It is visible in the
Project Explorer view. The project contains a set of property files which will be used
when run your servlets on the Tomcat server.

Lab 1 Page 13

IBM Software

__2. Create a new web project to run on the Tomcat server.

__a. Right click in empty space in the Project Explorer view, then select New > Dynamic
Web Project.

__b. In the Dynamic Web Project wizard, type HelloWorldServlet into the Project name
field and click Finish.

Page 14

IBM Software

__c. A web project is created in the Project Explorer.

__3. Create the default page for the web project.

__a. Right click the WebContent folder and then select New > JSP

__b. In the New Java Server Page wizard, type index.jsp into the File name field and
then click Next.

Lab 1 Page 15

IBM Software

__c. In the second page of the wizard, select New JSP File (xhtml) and then click Finish.

__d. A file named index.jsp will be created under the WebContent folder and an editor will
open for this new file.

__e. Within the <body> element, type the following HTML.

Hello World from JSP, it is <%= new Date().toString() %>

Page 16

IBM Software

__f. If after typing Date, you use code assist (Ctrl+Space), a list of possible classes will be
presented. Select java.util.date from the list and the import of that class will be
automatically added to your file as shown here.

__g. Save your changes (Ctrl+S).

__4. Run the web project on the Tomcat server.

__a. In the Project Explorer view, right click the HelloWorldServlet project then select
Run As > Run on Server from the menu.

Lab 1 Page 17

IBM Software

__b. In the Run On Server wizard select your Tomcat server and press Next.

__c. On the second page verify that your servlet has been correctly added to the Configured
projects list and then click Finish.

Page 18

IBM Software

__d. Soon, the Servers view will show that the server has started…

__e. The Console view will display some info about the running server...

__f. The Eclipse internal Web Browser view will open on the the URL of your servlet and
display your JSP with the current timestamp.

__5. If you have reached this last step, it means that your Tomcat is correctly set up and the WTP
features are properly installed. You can close the browser and any open editors. Shutdown the
Tomcat server from the Servers view by clicking the Stop the Server icon.

Lab 1 Page 19

IBM Software

1.6 Create a default project (or reuse an existing one!)

If you already have an RTC project area to use for the labs in your repository then skip this section and
go to section 1.7. If you don’t already have a project area, you can create one using the following steps:

__1. From the Eclipse RTC Client, open the Work Item perspective

__2. From the menu bar select File > New > Example…

__3. Select in the list Team Concert Example Project Setup and press Next

Page 20

IBM Software

__4. Press Next again

__5. On the next page, specify the Public URI of your CCM repository and login as a user having the
RTC - developer Client Access License and press Next

__6. Press Next one last time.

__7. Finally press Finish to create this project example in your repository.

Lab 1 Page 21

IBM Software

1.7 Loading examples

The zip file YYYY-MM-DD-oslc-workshop.zip contains all the Eclipse projects that you need to the
OSLC workshop. We will import them in your current Eclipse workspace.

__1. Open the Java EE perspective

__2. From the menu bar access to File > Import…

__3. Select in the list General > Existing Projects into Workspace and press Next.

Page 22

IBM Software

__4. Select the radio-button Select archive file then press Browse to retrieve the YYYY-MM-DD-
oslc-workshop.zip file.

Lab 1 Page 23

IBM Software

__5. Verify that all projects in the zip file are selected and press Finish.

__6. At this point, you should retrieve these 3 projects into your Project Explorer:

 The net.jazz.oslc.consumer.cm.client project contains all the samples for Lab 3

 The net.jazz.oslc.provider.cm.servlet project contains the code for Lab 4

 The net.jazz.oslc.consumer.rm.servlet project contains all the samples for Lab 6

 The org.apache.http project contains the Apache libraries used by the
net.jazz.oslc.consumer.cm.client project.

Apache HTTP Client
All our examples are based on Apache HTTP Client 4.0.1 API.
This is not a prerequisite. Feel free to adopt the HTTP Client framework
you prefer. We found this framework pretty convenient for our own needs.

You have completed lab 1. You now have a complete development
environment for OSLC consumers and providers.

Page 24

IBM Software

Lab 2 An introduction to the OSLC APIs

Lab Scenario
You will learn how to retrieve and use some default OSLC API directly
from your favorite web browser.
If your RTC server is not running, start it now
(<JazzTeamServer_Root_Folder>\server\server.startup.bat).

OSLC-CM Release 2
Since the first publication of this workshop, a new version of the OSLC-
CM specs has been released (http://open-
services.net/bin/view/Main/CmSpecificationV2).
For compatibility issues between 1.0 and 2.0 specifications, please read
http://open-services.net/bin/view/Main/CmSpecificationV2?
sortcol=table;table=up;up=#Version_Compatibility_with_1_0_S

RTC 3.0.1 supports both OSLC-CM specs.
By default, RTC 3.0.1 returns its results using the OSLC-CM 1.0
specification. So, if you wrote any code based on the OSLC-CM 1.0
rlease, it should be still working.
This workshop is based on the newest OSLC-CM specification to help you
use the latest features of these APIs.

Lab 1 Page 25

http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;table=up;up=#Version_Compatibility_with_1_0_S
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;table=up;up=#Version_Compatibility_with_1_0_S
http://open-services.net/bin/view/Main/CmSpecificationV2).This
http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/bin/view/Main/CmSpecificationV2

IBM Software

2.1 The Root Services document

__1. Open the Mozilla Firefox internet browser by double-clicking the Mozilla Firefox shortcut

 on the Windows Desktop.

__2. Enter the URL: https://jazz.server.com:9443/ccm/rootservices
This URL will return the Root Services document which is an XML informational resource that
lists a set of REST services and capabilities.

Root Services
The Root Services URL locates a REST API for discovering the
Jazz Team Server's various services and specific capabilities, such
as a way to discover a web UI presentation for particular kinds of
resources.
This Service is an open-ended mechanism that can be used to
keep track of and share important information about the Jazz Team
Server. There are backstage mechanisms for the various services
to register their important information with the Discovery Service.
The Discovery Service is also used by all services to discover the
whereabouts of other services provided by the other tools affiliated with
this JTS (Jazz Team Server).

Page 26

https://jazz.server.com:9443/ccm/rootservices

IBM Software

__3. One of these services is the “whoami” service.
Look for a tag named jfs:currentUser. The URL associated to the unique attribute rdf:resource
is the URL to access to the “whoami” service.

__4. Copy this URL (https://jazz.server.com:9443/ccm/whoami) and paste it into the navigation field of
your web browser and press Enter.

__5. If it is the first time that you try to reach this page, you will have to login first.
Log in using the credentials you defined to access the CCM application.

Authentication repeatedly fails

If you cannot pass the login page it might come from the fact that
your Web Browser doesn't accept third-party cookies.

To fix this issue in Firefox, follow these steps:

1. Open the Tools > Options...
2. Select the Privacy page
3. Verify that the following check-boxes are checked:

Lab 1 Page 27

https://jazz.server.com:9443/ccm/whoami

IBM Software

Page 28

IBM Software

To fix this issue in Internet Explorer, follow these steps:

1. Open the Tools > Internet Options
2. Select the Privacy page

3. Press the Advanced button

4. Verify the the Third-party Cookies are selected

Lab 1 Page 29

IBM Software

__6. The REST service provides a single resource that returns the URL of a user resource that
corresponds to the currently logged on user:

__a. Copy this URL and paste it in the navigation field of your web browser to directly access
the user resource.

Because we didn’t mention the format we would like to access this resource with, the
Jazz Team Server redirected us to the User Editor.

Page 30

IBM Software

2.2 The REST Client add-on

REST Client add-on
To be able to properly handle the response of a REST service, we need to
use a REST client application which will let us specify all of the
parameters required for an HTTP method.
There are several REST clients available on the web. We have chosen to
pick up one which can be installed directly on a Firefox web browser.
This REST client is a Firefox add-on named “REST Client”
(https://addons.mozilla.org/en-US/firefox/addon/9780).

Login / Protected resources

During the following lab examples, you might face a situation
where you get a 200 OK status code but not the expected result:

In this case, please check out if the HTTP headers you got doesn’t
have a key/value field set to:
X-com-ibm-team-repository-web-auth-msg: authrequired

Then it means that you try to access to a protected resource and you
need to login first. In such case, follow these steps to fix this issue:
1. Open a new tab on your current web browser

2. Login to the server entering the following URL in your navigation
field: https://jazz.server.com:9443/ccm/web
The login dialog Web UI will show up:

3. Login with using the credentials you have defined during the Jazz
Team Server setup.

4. Once you are logged, switch back to the REST client and retry to run the
described sample. It should work as expected.

Lab 1 Page 31

https://jazz.server.com:9443/ccm/web
https://addons.mozilla.org/en-US/firefox/addon/9780

IBM Software

__1. From the Tools menu of your web browser, select the item REST client to open the client UI.

This action opens a new tab of the web browser titled REST Client for Firefox.

Page 32

IBM Software

__2. Now we should be able to specify the correct parameters to access the XML representation of
the user resource.

__a. Choose the GET method from the Method combo-box

__b. In the URL field, copy/paste the URL of the current user that the “whoami” service has
revealed to you (e.g. https://jazz.server.com:9443/jts/users/philippe).

__c. Press the Add Request Header button and add the header key accept and the value
application/rdf+xml. This header specifies the Media Type of the response you are
expecting: RDF/XML (http://open-services.net/bin/view/Main/CmSpecificationV2?
sortcol=table;up=#Media_Types).

__d. Then press OK. At this moment the REST client UI should look like this:

Lab 1 Page 33

http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Media_Types
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Media_Types
https://jazz.server.com:9443/jts/users/philippe

IBM Software

__3. Press the Send button. The REST service Response Header displays the headers of the HTTP
response:

If the Status Code has the value “200 OK” it means that the HTTP request was handled
properly. If not, please check out the URL and the header you have provided.
You can also check that the type of the response (Content-Type) corresponds to your request
application/rdf+xml.

Cache issue

It happened during the writing of this workshop that the REST client plugin will not
return the expected media type. For example instead of application/xml we will
get an application/rdf+xml result. It seems to be a Web Browser cache issue.

The work around will consist in:

1. Opening the Tools > Options... of your Firefox web browser
2. Accessing to the Privacy page

3. Pressing the Show Cookies... button
4. Retrieving the server you are talking too in your OSLC requests

Page 34

IBM Software

5. And, finally, the pressing the button Remove Cookies.
After these steps, you can retry to run your OSLC request, it should work.

__4. Press the “Formatted XML” tab to display the response body.

The representation of a user resource is based on the Friend of a Friend (FOAF) RDF
vocabulary (http://xmlns.com/foaf/spec/).

Lab 1 Page 35

http://xmlns.com/foaf/spec/

IBM Software

2.3 OSLC-CM services

Until now we were calling Jazz Foundation REST services which are specific to the Jazz Team Servers.
It is time now to call specifically the OSLC-CM REST services implemented in the Jazz Team Server.
The specifications of these APIs are defined on the web site of the Open Services for Lifecycle
Collaboration community (http://open-services.net/bin/view/Main/CmSpecificationV2).

__1. From the Root Services document, extract the Change Management Catalog URL (pointed to by
rdf:resource) of the element oslc_cm:cmServiceProviders.

__2. Copy this URL (https://jazz.server.com:9443/ccm/oslc/workitems/catalog) and paste it into the
URL field of REST client.

__3. If you already have a request header setup, select it, then press the Del key to remove the
existing header.

__4. Press the Add Request Header button and add the header key accept with the value
application/xml. This header specifies you are expecting an XML response (and not an
RDF/XML).
You can also double-click on the header to edit it and adapt it to the example.

Resource Format
The Specification says (http://open-
services.net/bin/view/Main/CmSpecificationV2?
sortcol=table;table=up#Resource_Formats):

When CM Consumers request:
• application/rdf+xml CM Providers MUST respond with RDF/XML

representation without restrictions.
• application/json CM Providers MUST respond with JSON

representation as defined in the OSLC Core Representations
Guidance.

• application/xml CM Provider MUST respond with OSLC-defined
abbreviated XML representation as defined in the OSLC Core
Representations Guidance

• application/atom+xml CM Provider MUST respond with Atom
Syndication Format XML representation as defined in the OSLC Core
Representations Guidance

• The Atom Syndication Format XML representation SHOULD use
RDF/XML representation without restrictions for the atom:content
entries representing the resource representations.

For the readability of this workshop we require as often as it is possible
the application/xml media type. Feel free to use another resource format
if it is more convenient for you.

Page 36

http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;table=up#Resource_Formats
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;table=up#Resource_Formats
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;table=up#Resource_Formats
https://jazz.server.com:9443/ccm/oslc/workitems/catalog
http://open-services.net/

IBM Software

__5. Press the Add Request Header button a second time and declare a new
header OSLC-Core-Version: 2.0. The header indicates to the OSLC
producer that you are expecting a response based on the latest release
of the OSLC-CM specifications (http://open-
services.net/bin/view/Main/OslcCoreSpecification#Specification_Versioni
ng).

__6. Then press OK. At this moment, the Firefox REST client UI should look like this:

__7. Press the Send button. The REST service response header will be displayed at on bottom part
of the UI. If the Status Code doesn’t show the value “200 OK”, please check out the URL and the
headers you have provided.

Lab 1 Page 37

IBM Software

__8. Press the “Formatted XML” tab to display the response body.

The resulting document contains a list of oslc:ServiceProvider elements that point to the
documents which contain the actual service descriptions.
In the case of RTC, there is one ServiceProvider element for each Project Area.
Typically, an application would use the title of this element to allow the user to choose between
the project areas.

__9. Press the “Response Body” tab to display the response body source text.

__10. From this view, you should be able to retrieve the Service Provider element for the JUnit
Project Project Area (or your chosen Project Area) and copy the URL associated to the attribute
rdf:about defined in the element oslc:ServiceProvider .

__11. Paste the Service Provider URL in the URL field of the REST client and keep the headers as
they are:

 Accept: application/xml
 OSLC-Core-version: 2.0

Page 38

IBM Software

Lab 1 Page 39

IBM Software

__12. Press the Send button. The response body will display Service Provider document (http://open-
services.net/bin/view/Main/OslcCoreSpecification#Service_Provider_Resources) listing all the
REST services available for this Service Provider (alias Project Area):

__13. You will find 4 kinds of services:

__a. Creation Factory: Enables clients to create new resources:

__b. Query Capability: Enables clients query across a collection of resources

__c. Selection Dialog: Enables clients to select a resource via UI

Page 40

http://open-services.net/bin/view/Main/OslcCoreSpecification#Service_Provider_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification#Service_Provider_Resources

IBM Software

__d. Creation Dialog: Enables clients to create a resource via UI

2.4 Search for Work Items

In this section, we will describe how we can query Work Items using the corresponding OSLC-CM REST
service.

__6. Scroll back to the oslc:QueryCapability element in the Service Provider services document.

__7. From this element, look for the oslc:queryBase element and copy the URL associated to the
attribute rdf:resource defined.

__8. Paste this URL into in the URL field of the REST client and keep the headers as they are.

Lab 1 Page 41

IBM Software

__9. Press the Send button, the response body will display ALL the work items (rdfs:member
elements) listed in the corresponding Project Area.

__10. Scroll down a little bit in the result, you will find an oslc:totalCount element indicating the
number of rdfs:member elements.

Actually, this REST service supports the following parameters (http://open-
services.net/bin/view/Main/OSLCCoreSpecQuery): oslc.searchTerms, oslc.where,
oslc.select, oslc.properties and oslc.prefix.

These parameters offer the possibility to filter the work items you are looking for and which data
to fetch.

__11. For example, let try to retrieve all the work items which contain the word “exception” in it.
To do so, complete the Query URL with the following parameter:

 ?oslc.searchTerms="exception"

Page 42

http://open-services.net/bin/view/Main/OSLCCoreSpecQuery
http://open-services.net/bin/view/Main/OSLCCoreSpecQuery

IBM Software

So the URL should look like this:
https://jazz.server.com:9443/ccm/oslc/contexts/_uCjawFTUEeCod6NdTaW--w/workitems?
oslc.searchTerms="exception" :

Lab 1 Page 43

https://jazz.server.com:9443/ccm/oslc/contexts/_uCjawFTUEeCod6NdTaW--w/workitems?oslc.searchTerms
https://jazz.server.com:9443/ccm/oslc/contexts/_uCjawFTUEeCod6NdTaW--w/workitems?oslc.searchTerms

IBM Software

__12. Press the Send button. the response body will display a subset of these work items:

If we complete the previous request with the oslc.select parameter, we will be able to specify the
subset of attributes/elements we want to fetch from the server. For example, let say you are only
interested in the work item ID (dcterms:identifier) and the work item title (dcterms:title). In this
case, complete the previous URL with the following expression:

 &oslc.select=dcterms:identifier,dcterms:title

So the URL should look like this:
https://jazz.server.com:9443/ccm/oslc/contexts/_uCjawFTUEeCod6NdTaW--w/workitems?
oslc.searchTerms="exception"&oslc.select=dcterms:identifier,dcterms:title

Page 44

https://jazz.server.com:9443/ccm/oslc/contexts/_68EfMFErEd-SYLn-ohNPpg/workitems?oslc_cm.query=oslc_cm:searchTerms=%5C
https://jazz.server.com:9443/ccm/oslc/contexts/_68EfMFErEd-SYLn-ohNPpg/workitems?oslc_cm.query=oslc_cm:searchTerms=%5C

IBM Software

__13. Press the Send button. The REST client will only display the requested attributes:

__14. If you want to retrieve all the attributes of a work item, then grab the URL of a rdf:member
previously listed and paste it in the URL field:

Lab 1 Page 45

IBM Software

__15. Press Send. The Formatted XML tab should display all the attributes of the ChangeRequest
(alias Work Item)

Conclusion

You have completed lab 2. You now have an initial understanding of the
OSLC APIs.
In the next lab you will learn how to programmatically access this API.

Page 46

IBM Software

Lab 3 Access OSLC APIs programmatically

Lab Scenario
You will learn how to access OSLC APIs programmatically and you will
build your first OSLC Consumer.

This lab uses the OSLC-CM API. Later, in Lab 5, OSLC-RM API
examples will be provided.

If your Jazz Team Server is not running, start it now
(<JazzTeamServer_Root_Folder>\server\server.startup.bat).

3.1 Accessing the Root Services document

This first example describes how to fetch the content of a URL, and more particularly, how to fetch the
Root Services document using the Apache HTTP Client API.

__1. If not already running, start the RTC Eclipse client (<TeamConcert_Root_Folder> \eclipse.exe).
When prompted to select an Eclipse workspace, use C:\RTC30Dev\DevWS.

__2. In the Package Explorer view, expand the src/net.jazz.oslc.consumer.examples source
package of the net.jazz.oslc.consumer.cm.client Eclipse project and then double click the
Example01.java file.

Lab 1 Page 47

IBM Software

__3. Change the RTC Server URL, if necessary, by changing the value of the String server variable.
For example, if your CCM server is accessed as https://jazz.server.com:9443/ccm then the
initialization of the server variable would be

 String server = "https://jazz.server.com:9443/ccm";

__4. Make sure you save the file (Ctrl-S).

Page 48

https://jazz.server.com:9443/ccm

IBM Software

__5. The following snippet of code is extracted from the main method.

// Setup the HttClient
HttpClient httpclient = new DefaultHttpClient();
// Disabling SSL Certificate Validation
HttpUtils.setupLazySSLSupport(httpclient);
// Setup the HTTP GET method
HttpGet rootServiceDoc = new HttpGet(rootServices);
rootServiceDoc.addHeader("Accept", "application/rdf+xml");
rootServiceDoc.addHeader("OSLC-Core-Version", "2.0");

HttpResponse response;
try {

// Execute the request
response = httpclient.execute(rootServiceDoc);
System.out.println(">> HTTP Status code:" + response.getStatusLine());

if (response.getStatusLine().getStatusCode() == 200) {
System.out.println(">> HTTP Response Headers: ");
HttpUtils.printResponseHeaders(response);

System.out.println(">> HTTP Response Body: ");
HttpUtils.printResponseBody(response);

} else {
// Release allocated resources
response.getEntity().consumeContent();

}
} catch (ClientProtocolException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
} finally {

// Shutdown the HTTP connection
httpclient.getConnectionManager().shutdown();

}

__6. To get access to the Apache HTTP Client API, for executing an HTTP method, we need to
create an instance of org.apache.http.impl.client.DefaultHttpClient:

// Setup the HttClient
HttpClient httpclient = new DefaultHttpClient();

__7. The Jazz Team Server uses the SSL (Secure Socket Layer) protocol. If we try to access any
HTTPS URL, we will get an SSL certificate exception. It is for this reason that the client needs to
specify how he wants to handle the certificates.
For the purpose of the demo, we have defined some code which disables the certificate
validation by overwriting the default behavior to trust any certificate.

// Disabling SSL Certificate Validation
HttpUtils.setupLazySSLSupport(httpclient);

This behavior is implemented by the HttpUtils.setupLazySSLSupport static method.

Lab 1 Page 49

IBM Software

__8. The next line creates an instance of org.apache.http.client.methods.HttpGet which refines the
call to the HTTP GET method. The call is initialized with the URI of the CCM Root Services
document. The request is completed with the header specifying the expected media type result
and expected format base of the OSLC-CM Release 2.0 specifications.

// Setup the HTTP GET method
HttpGet rootServiceDoc = new HttpGet(“https://jazz.server.com:9443/ccm”);
rootServiceDoc.addHeader("Accept", "application/rdf+xml");
rootServiceDoc.addHeader("OSLC-Core-Version", "2.0");

__9. The next line sends/executes the GET. The response of the http method is returned in an
instance of org.apache.http.HttpResponse.

// Execute the request
HttpResponse response = httpclient.execute(rootServiceDoc);

__10. The next line prints out the status code of the HTTP response

System.out.println(">> HTTP Status code: " + response.getStatusLine());

__11. If the response is OK (status code = 200) then the code prints the response headers
(HttpUtils.printResponseHeaders) and the response body (HttpUtils.printResponseBody).

System.out.println(">> HTTP Response Headers: ");
HttpUtils.printResponseHeaders(response);

System.out.println(">> HTTP Response Body: ");
HttpUtils.printResponseBody(response);

__12. If the response is an error, then the code releases any created resources:

// Release allocated resources
response.getEntity().consumeContent();

__13. Finally, the last line shuts down the HTTP client by releasing the connections.

// Shutdown the HTTP connection
httpclient.getConnectionManager().shutdown();

Page 50

IBM Software

__14. Now that we have a good understanding of the code, lets run it.

__a. Select the Example01.java file in the Package Explorer:

__b. Press the Run as… button located on toolbar

__c. Select run the example as a Java Application and press OK.

Lab 1 Page 51

IBM Software

__d. The Console view will appear in the bottom part of the workbench displaying the
example print out.

The log should look like this:

>> Example01: Accessing Root Services document with HttpClient
- Root Services URI: https://jazz.server.com:9443/ccm/rootservices

>> HTTP Status code:HTTP/1.1 200 OK
>> HTTP Response Headers:

- Server: Apache-Coyote/1.1
- Cache-Control: private
- Expires: Sat, 09 Apr 2011 19:29:21 CEST
- ETag: "nUwueFfDxzrI2ZvwjJI8YeoZeDM="
- Content-Type: application/rdf+xml;charset=UTF-8
- Transfer-Encoding: chunked
- Date: Fri, 08 Apr 2011 17:29:21 GMT

>> HTTP Response Body:
<?xml version="1.0"?><!--
 Licensed Materials - Property of IBM
 (c) Copyright IBM Corporation 2010. All Rights Reserved.

 Note to U.S. Government Users Restricted Rights:
 Use, duplication or disclosure restricted by GSA ADP Schedule
 Contract with IBM Corp.
 -->

<rdf:Description
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

Page 52

IBM Software

 xmlns:dc="http://purl.org/dc/terms/"
 xmlns:jfs="http://jazz.net/xmlns/prod/jazz/jfs/1.0/"
 xmlns:jd="http://jazz.net/xmlns/prod/jazz/discovery/1.0/"
 xmlns:jdb="http://jazz.net/xmlns/prod/jazz/dashboard/1.0/"
 xmlns:jp06="http://jazz.net/xmlns/prod/jazz/process/0.6/"

 xmlns:jp="http://jazz.net/xmlns/prod/jazz/process/1.0/"
 xmlns:jtp="http://jazz.net/xmlns/prod/jazz/jtp/0.6/"

 xmlns:ju="http://jazz.net/ns/ui#"
 xmlns:oslc="http://open-services.net/ns/core#"
 rdf:about="https://jazz.server.com:9443/ccm/rootservices">

…/...

</rdf:Description>

Lab 1 Page 53

https://jazz.server.com:9443/ccm/rootservices

IBM Software

3.2 Retrieve the Service Provider catalog using Xpath

This example shows how an OSLC consumer can retrieve an element or an attribute of an element in an
XML representation, such as the Root Services document.

Actually, this example uses the XPath language to retrieve the Service Provider catalog listed by the
attribute rdf:resource of the element oslc_cm:cmServiceProviders.

The W3C XPath language () has been defined for querying XML documents to select any node
(element or attribute) or list of nodes. Here are few XPath expression examples:

Expression Description
foo Selects all the child nodes named foo.
/foo Selects from the root node the nodes named foo.
//foo Selects nodes named foo no matter where they are in the

document
@att Selects the attribute node named att.
foo/bar Selects all the nodes named bar having a parent node named

foo.
//foo[@att] Select all the nodes named foo no matter where they are

having an attribute named att.
//foo [@att="val”] Select all the nodes named foo no matter where they are

having an attribute named att with the value val.

Page 54

http://www.w3.org/TR/xpath/

IBM Software

XPath tester
if you need to test an XPath expression against some XML code, there
are several interesting testers on the web.
• We found a first one which requires to upload the XML file to parse:

http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
• We found another one which accepts a copy/paste of the XML

content to parse: http://www.futurelab.ch/xmlkurs/xpath.en.html
For example, knowing that the Root Services document has the following tag structure:

<?xml version="1.0"?>
<rdf:Description …>
…/…
 <!-- Change Management service catalog -->
 <oslc_cm:cmServiceProviders

 xmlns:oslc_cm="http://open-services.net/xmlns/cm/1.0/"
 rdf:resource="https:// jazz.server.com:9443/ccm/oslc/workitems/catalog" />

…/…
</rdf:Description>

The XPath expression to retrieve the node defining the Service Provider catalog will be:

/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource

This expression means: “Select the attribute node named rdf:resource from the element node
named oslc_cm:cmServiceProviders, child of the root element named rdf:Description.”

Let see the code for the next example now…

__1. In the Package Explorer view, open the Example02.java file and look at the main method:

// Define the XPath evaluation environment
XPathFactory factory = XPathFactory.newInstance();
XPath xpath = factory.newXPath();
xpath.setNamespaceContext(

new NamespaceContextMap(new String[]
{ "rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "oslc_cm","http://open-services.net/xmlns/cm/1.0/"}));

// Parse the response body to retrieve the catalog URI
InputSource source = new InputSource(response.getEntity().getContent());
Node attribute = (Node) (xpath.evaluate("/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource",

source, XPathConstants.NODE));

// Print out the Service Provider catalog URI
System.out.println(">> Catalog URI: " + attribute.getTextContent());

__2. The first lines create an instance of an XPath evaluation environment. This environment is set up
to be able to parse and understand nodes using the rdf and oslc-cm namespaces.

Lab 1 Page 55

http://www.futurelab.ch/xmlkurs/xpath.en.html
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm

IBM Software

XPathFactory factory = XPathFactory.newInstance();
XPath xpath = factory.newXPath();

__3. The next instruction sets the namespace context. This interface is used to retrieve the
namespaces corresponding to the prefixes used by the XPath. In this example, the XPath is
/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource. It references two
prefixes “rdf” and “oslc_cm”. So the NamespaceContext defines the mapping between these
prefixes and the namespaces (xlmns declarations) used in the document that the XPath will
parse.

xpath.setNamespaceContext(
new NamespaceContextMap(new String[]

{ "rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "oslc_cm", "http://open-services.net/xmlns/cm/1.0/"}));

__4. The next lines parse the response body (response.getEntity().getContent()) using the
XPath.evaluate method. This method takes 3 arguments:

// Parse the response body
InputSource source = new InputSource(response.getEntity().getContent());
Node attribute = (Node) (xpath.evaluate(
 "/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource",
 source, XPathConstants.NODE));

__a. The XPath expression to evaluate, describing the node(s) to select. In the example code,
we provide the XPath to retrieve the URI of the Service Provider catalog:

"/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource"

__b. The source to parse.

This source can be either an org.xml.sax.InputSource or directly a
DOM structure like an org.w3c.dom.Document or an
org.w3c.dom.Element.
If you know that you will have to parse the same document several times,
we recommend creating the DOM structure using your favorite SAX
parser then reuse the DOM document each time you need it.

__c. The expected return type.

This return type can take 2 values:
- XPathConstants.NODE then the method will return the first

Node found.
- XPathConstants.NODESET then the method will return a

NodeList of all the nodes found.
In the example code, we are looking for the first attribute found.

__5. The last line prints out the value associated the found attribute. This value should be the Service
Provider catalog URI:

// Print out the Service Provider catalog URI
System.out.println(">> Catalog URI: " + attribute.getTextContent());

Page 56

IBM Software

Lab 1 Page 57

IBM Software

__6. Now that we have a good understanding of the code, lets run it.

__a. Double-click the Example02.java file in the Package Explorer.

__b. First change the RTC Server URL if necessary by changing the value of the String
server variable. For example if your CCM server is accessed as
https://jazz.server.com:9443/ccm then the initialization of the server variable would be

 String server = "https://jazz.server.com:9443/ccm";

__c. Make sure you save the file (Ctrl-S).

__d. Run the sample as a Java application

__e. The Console view will print out the catalog URI:.

3.3 Jazz Form-based Authentication

In the next example we will see how to authenticate and pass the Jazz Team Server (JTS) security
mechanisms defined by the foundation core services. Then we should be able to reach any protected
document like the Service Provider catalog document.

This example prints out the titles of each Service Provider (alias Project Area) stored in the JTS we are
connected to.

Contrary to the Root Services document, the Service Provider catalog document is a protected
document, so the client needs to authenticate with the JTS to be able to access it.

JTS uses a Form-Based Authentication. This authentication has to go thru three steps:

Page 58

https://jazz.server.com:9443/ccm

IBM Software

__1. The client requests a protected resource.

__2. If the client is not authenticated, the server responds a redirect to the login page, and the client
has to fill the form and submit it to the server.

__3. If the login has succeeded, the client submits a request the protected resource again and should
get it back.

This behavior is implemented by the sendGetForSecureDocument method stored in the HttpUtils class.
If you don’t want to dig into this implementation, feel free to directly skip to step (11).

Lab 1 Page 59

IBM Software

__4. In the Package Explorer view, open the HttpUtils.java file and scroll to the
sendGetForSecureDocument method. To simplify the code, we have removed all the printouts
from the snipped code.

// Step (1): Request the protected resource
HttpResponse documentResponse = httpClient.execute(request);

if (documentResponse.getStatusLine().getStatusCode() == 200) {
Header header = documentResponse.getFirstHeader("x-com-ibm-team-repository-web-auth-msg");

if ((header!=null) && ("authrequired".equals(header.getValue()))) {
documentResponse.getEntity().consumeContent();
// The server requires an authentication: Create the login form
HttpPost formPost = new HttpPost(serverURI+"/j_security_check");
List<NameValuePair> nvps = new ArrayList<NameValuePair>();
nvps.add(new BasicNameValuePair("j_username", login));
nvps.add(new BasicNameValuePair("j_password", password));
formPost.setEntity(new UrlEncodedFormEntity(nvps, HTTP.UTF_8));

// Step (2): The client submits the login form
HttpResponse formResponse = httpClient.execute(formPost);

header = formResponse.getFirstHeader(AUTHREQUIRED);
if ((header!=null) && ("authfailed".equals(header.getValue()))) {

// The login failed
throw new InvalidCredentialsException("Authentication failed");

} else {
formResponse.getEntity().consumeContent();
// The login succeed

// Step (3): Request again the protected resource
HttpGet documentGet2 = (HttpGet)(request.clone());
return httpClient.execute(documentGet2);

}
}

}
return documentResponse;

__5. For the first step, as for any other document, the client tries to reach the document:

// Step (1): Request the protected resource
HttpResponse documentResponse = httpClient.execute(documentGet);

Page 60

IBM Software

__6. If the request didn’t return any error, the client checks out if an authentication is required. This
check will consist in verifying the presence of the x-com-ibm-team-repository-web-
auth-msg HTTP response header.
If the value of this header is authrequired then the client must submit a form-based login
(https://jazz.net/wiki/bin/view/Main/JFSCoreSecurity#User_Authentication).
if the authentication is not required, the client returns the HTTP response.

if (documentResponse.getStatusLine().getStatusCode() == 200) {
Header header = documentResponse.getFirstHeader("x-com-ibm-team-repository-web-auth-msg");

if ((header!=null) && ("authrequired".equals(header.getValue()))) {
…

} else {
return documentResponse;

}

__7. The next step consists of filling in and POSTing the authentication form:

// The server requires an authentication: Create the login form
HttpPost formPost = new HttpPost(serverURI+"/j_security_check");
List<NameValuePair> nvps = new ArrayList<NameValuePair>();
nvps.add(new BasicNameValuePair("j_username", login));
nvps.add(new BasicNameValuePair("j_password", password));
formPost.setEntity(new UrlEncodedFormEntity(nvps, HTTP.UTF_8));
// Step (2): The client submits the login form
HttpResponse formResponse = httpClient.execute(formPost);

__8. Then the client needs to check out the result of the login. If the login failed then the client should
throw an exception:

header = formResponse.getFirstHeader("x-com-ibm-team-repository-web-auth-msg ");
if ((header!=null) && ("authfailed".equals(header.getValue()))) {

// The login failed
throw new InvalidCredentialsException("Authentication failed");

}

__9. If the login didn’t fail, then the client can request the protected document a second time, and
should receive the expected response:

// Step (3): Request again the protected resource
HttpGet documentGet2 = (HttpGet)(request.clone());
return httpClient.execute(documentGet2);

At this point, we should be able to understand the third example.

Lab 1 Page 61

https://jazz.net/wiki/bin/view/Main/JFSCoreSecurity#User_Authentication

IBM Software

__10. In the Package Explorer view, open the Example03.java file and look at the main method:

// Setup the catalog request
HttpGet catalogDoc = new HttpGet(serviceProvidersCatalog);
catalogDoc.addHeader("Accept", "application/xml");
catalogDoc.addHeader("OSLC-Core-Version", "2.0");

// Access to the Service Providers catalog
HttpResponse catalogResponse

= HttpUtils.sendGetForSecureDocument(server, catalogDoc, login, password, httpclient);
if (catalogResponse.getStatusLine().getStatusCode() == 200) {

// Define the XPath evaluation environment
XPath xpath2 = factory.newXPath();
xpath2.setNamespaceContext(

new NamespaceContextMap(new String[]
{ "oslc", "http://open-services.net/ns/core#",

"dcterms", "http://purl.org/dc/terms/"}));

// Parse the response body to retrieve the Service Provider
source = new InputSource(catalogResponse.getEntity().getContent());
NodeList titleNodes = (NodeList) (xpath2.evaluate(

serviceProviderTitleXPath, source,
XPathConstants.NODESET));

// Print out the title of each Service Provider
int length = titleNodes.getLength();
System.out.println(">> Project Areas:");
for (int i = 0; i < length; i++) {

System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());
}

}

__a. Once the client has retrieved the URI of the Service Provider catalog
(serviceProvidersCatalog), it can fetch the catalog.
Because the catalog is a protected document, the client uses the Form Based
authentication code we have previously described. The associated Media Type is
application/xml.

// Access to the Service Providers catalog
HttpResponse catalogResponse

= HttpUtils.sendGetForSecureDocument(server, catalogDoc, login, password, httpclient);

Page 62

IBM Software

__b. If the server didn’t return an error, then the client can parse the response body and
extract from the Service Provider catalog document the title nodes of each Service
Provider (alias Project Area) and print out the Service Provider title:

// Define the XPath evaluation environment
XPath xpath2 = factory.newXPath();
xpath2.setNamespaceContext(

new NamespaceContextMap(new String[]
{ "oslc", "http://open-services.net/ns/core#",

"dcterms", "http://purl.org/dc/terms/"}));

// Parse the response body to retrieve the Service Provider
source = new InputSource(catalogResponse.getEntity().getContent());
NodeList titleNodes

= (NodeList) (xpath2.evaluate(
"//oslc:ServiceProvider/dcterms:title",
source, XPathConstants.NODESET));

// Print out the title of each Service Provider
int length = titleNodes.getLength();
System.out.println(">> Project Areas:");
for (int i = 0; i < length; i++) {

System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());
}

The developer knows that the Service Provider catalog document has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:ns1="http://jazz.net/xmlns/prod/jazz/process/1.0/"

xmlns:oslc="http://open-services.net/ns/core#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<oslc:ServiceProviderCatalog rdf:about="https://jazz.server.com:9443/ccm/oslc/workitems/catalog">

<dcterms:title rdf:parseType="Literal">Project Areas</dcterms:title>
<dcterms:publisher>

.../...
</dcterms:publisher>
<oslc:domain rdf:resource="http://open-services.net/ns/cm#"/>
<oslc:serviceProvider>

<oslc:ServiceProvider rdf:about= "https://jazz.server.com:9443/ccm/oslc/.../services.xml">
<dcterms:title rdf:parseType="Literal">JUnit Project</dcterms:title>
<oslc:details

rdf:resource="https://jazz.server.com:9443/ccm/process/..."/>
<ns1:consumerRegistry rdf:resource="https://jazz.server.com:9443/ccm/process/.../links"/>

</oslc:ServiceProvider>
</oslc:serviceProvider>

</oslc:ServiceProviderCatalog>
</rdf:RDF>

Therefore the XPath expression to retrieve the dcterms:title nodes of the Service Provider could be:

"/rdf:RDF/oslc:ServiceProviderCatalog/oslc:serviceProvider/oslc:ServiceProvider/dcterms:title"

Lab 1 Page 63

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://open-services.net/ns/core
http://jazz.net/xmlns/prod/jazz/process/1.0/
http://purl.org/dc/terms/

IBM Software

We could also simplify this expression with the following XPath expression:

"//oslc:ServiceProvider/dcterms:title"

This expression means: select all the oslc_disc:ServiceProvider nodes, no matter where they
are, then select their dcterms:title child node. In this particular case, we could even simplify to the
following XPath expression:

//dcterms:title

Actually, the above expression means: select all the dcterms:title nodes no matter
where they are.

__11. Now that we have a good understanding of the code, lets run it.

__a. Select the Example03.java file in the Package Explorer

__b. If necessary first change the values of the following variables to match your setup:

 String server = https://jazz.server.com:9443/ccm;
String login = "ADMIN";
String password = "ADMIN";

Page 64

https://rtc:9443/ccm

IBM Software

__c. Make sure you save the file (Ctrl-S).

__d. Run it as Java application.

__e. The Console view will print out the titles of the Project Areas currently stored in the Jazz
Team Server:.

3.4 Work Item update

This last example describes how to retrieve an existing Change Request (alias Work Item), modify it and
store it back in the server.

__1. In the Package Explorer view, open the Example04.java file and scroll to the run method. To
simplify the reading of the code, we have split the code into a set of methods describing all of
the steps to retrieve a Change Request, fetch it, modify it, and finally store it back.

// Step (1) : Retrieve the Service Provider catalog
String catalogURI = getServiceProviderCatalog();
System.out.println(">> Service Provider Catalog: "+catalogURI);

// Step (2) : Retrieve the designated Service Provider (Project Area)
String paName = "Extension and Integration Workshops";
String projectAreaURI = getServiceProvider(catalogURI, paName);
System.out.println(">> Project Area ["+paName+"]: "+projectAreaURI);

// Step (3) : Retrieve the Change Request Simple Query for the current Service Provider
String simpleQueryURI = getSimpleQueryURI(projectAreaURI);
System.out.println(">> Simple Query URL: "+simpleQueryURI);

// Step (4) : Retrieve the designated Change Request (Work Item)
String wiID = "1";
ChangeRequest cr = getChangeRequest(simpleQueryURI, wiID);
System.out.println(">> Change Request URL for ["+wiID+"]: "+cr.getUri());

// Step (5) : Apply modification to the current Change Request
cr.setDcDescription(cr.getDcDescription()+" – " + new Date().toString());

Lab 1 Page 65

IBM Software

// Step (6) : Update the Change Request on the server
HttpResponse response = updateChangeRequest(cr);

// Step (7) : Print out the HTTP PUT method response
System.out.println(">> Update Response Status code:" + response.getStatusLine());
System.out.println(">> Update Response Headers:");
HttpUtils.printResponseHeaders(response);
System.out.println(">> Update Response Body:");
HttpUtils.printResponseBody(response);

__2. We will not spend time on the first 3 steps which have been explained during the previous
examples. Step (4) is interesting because the code not only fetches a Change Request resource
but it also maps the XML representation to a Java Object representation, which is an instance of
the net.jazz.oslc.cm.datamodel.ChangeRequest.

__a. Actually, this method queries the designated Change Request, fetching only the subset
of properties supported by the ChangeRequest implementation (dcterms:title,
dcterms:identifier, dcterms:type, dcterms:description, dcterms:subject,
dcterms:creator, dcterms:modified, rdf:about):

// Build the query requesting a change request with a specific dc:identifier
// Fetch only a subset of its properties
String queryWIs = simpleQueryURI

+"?oslc.where="+URLEncoder.encode("dcterms:identifier=\""
+wiID+"\"", HTTP.UTF_8)
+"&oslc.select="
+"dcterms:title,dcterms:identifier,dcterms:type,dcterms:description,dcterms:subject,"
+"dcterms:creator,dcterms:modified";

HttpGet query = new HttpGet(queryWIs);
query.addHeader("Accept", "application/xml");
query.addHeader("OSLC-Core-Version", "2.0");

HttpResponse response = HttpUtils.sendGetForSecureDocument(server, query, login, password, httpclient);

__b. Then the client extracts from the HTTP response the org.w3c.dom.Node representing
the Change Request

// Define the XPath evaluation environment
XPathFactory factory = XPathFactory.newInstance();
XPath xpath = factory.newXPath();
String wiXPath = "//oslc_cm:ChangeRequest";
xpath.setNamespaceContext(

new NamespaceContextMap(new String[]
{"oslc_cm", "http://open-services.net/ns/cm#"}));

// Parse the response body to retrieve the Change Request DOM node
InputSource source = new InputSource(response.getEntity().getContent());

Element wiNode = (Element)(xpath.evaluate(wiXPath, source, XPathConstants.NODE));

Page 66

IBM Software

__c. Finally, the client instantiates a new Change Request based on the content of the Node,
and returns the resulting ChangeRequest instance.

// Create the corresponding ChangeRequest instance
String wiURI = wiNode.getAttribute("rdf:about");
return new ChangeRequest(wiURI, wiNode);

__2. Step (5): During this step, the client modifies the Change Request using the provided API.
Actually, it concatenates the current time stamp at the end of the description.

// Step (5) : Apply modification to the current Change Request
cr.setDcDescription(cr.getDcDescription()+" – " + new Date().toString());

__3. Step (6): In this step, the client uses the Update Change Request OSLC-CM API to update the
modified Change Request. For that, the client needs to send an HTTP PUT message with the
Change Request URI, the content-type header must be set to application/xml and the
request’s body must contain the XML representation of the modified Change Request.

This behavior is implemented by the updateChangeRequest method:

private HttpResponse updateChangeRequest(final ChangeRequest cr) throws InvalidCredentialsException,
IOException
{

// How to fill the request body (Content Producer)
ContentProducer cp = new ContentProducer() {
public void writeTo(OutputStream outstream) throws IOException {
 Writer writer = new OutputStreamWriter(outstream, HTTP.UTF_8);
 cr.writeXML(writer);
 writer.flush();
 }
};

HttpEntity entity = new EntityTemplate(cp);
HttpPut put = new HttpPut(cr.getUri());
put.addHeader("Accept", "application/rdf+xml");
put.addHeader("Content-type", "application/xml");
put.setEntity(entity);

// Call the PUT method against the Change Request URI
return HttpUtils.sendPutForSecureDocument(server, cp, put, login, password, httpclient);

If you dig into the HttpUtils.sendPutForSecureDocument method, you will notice that this
method implements the same form-based authentication pattern as for the
sendGetForSecureDocument method previously described.

Lab 1 Page 67

IBM Software

__4. Step (7): This step prints out the response of the HTTP PUT. So, let run the example and check
out the results.

__a. Select the Example04.java file in the Package Explorer.

__b. If necessary first change the values of the following variables to match your setup:

 String server = https://jazz.server.com:9443/ccm;
String login = "ADMIN";
String password = "ADMIN";
String projectAreaName = "JUnit Project";
String changeRequestID = "1";

__c. Make sure you save the file (Ctrl-S).

__d. Run the example as a Java application.

__e. The Console view should provide the following output:

Page 68

https://jazz.server.com:9443/ccm

IBM Software

__5. Copy the URL of the Work Item from the Console view. It should be located after the label:
Change Request URL for [1].

__6. Open the Firefox internet browser by double-clicking the Mozilla Firefox shortcut on the
Windows Desktop.

__7. Paste the copied URL into the navigation field of your browser and Press Enter.

__8. If you were not already logged in, the web UI will display the login dialog.
Login with your current admin login.

Lab 1 Page 69

IBM Software

__9. After the login, the Work Item WebUI editor will appear and you should be able to check out that
the description has been changed with a timestamp at the end:

3.5 Build your first OSLC servlet

At this point of the workshop, you have all the knowledge to build a web application which will take
advantage of the OSLC-CM consumer API.

In this example, we will implement a simple Web portal listing all the Project Areas of a designated
OSLC-CM server.

Page 70

IBM Software

__3. Launch the Eclipse client

__4. Create an Eclipse Dynamic Web project. Unlike with static Web projects, dynamic Web projects
enable you to create resources such as JavaServer Pages and servlets which is what we need.

__a. From the File menu, select New > Other...

__b. From the New dialog wizard select the Dynamic Web Project item and press Next.

__c. For the project name, type MyPortal and press Finish.

Lab 1 Page 71

IBM Software

__d. A dialog will pop up telling you that for this kind of project, the Java EE perspective is
associated. The dialog asks if you want to switch to this perspective. Answer Yes.

__e. At this point, you should have a new eclipse project named MyPortal listed in the
Project Explorer view of the Java EE perspective.

Page 72

IBM Software

__6. Create an HTML page to connect to an OSLC server and display its Project Areads. For that we
will need to know the Public URI of the server, and the login / password for authentication.

__a. Click on the WebContent folder of your new Eclipse project.

__b. From the context menu, select New > HTML Page to create a HTML page

__c. In the file name field, type index.html and press Finish

This wizard creates and HTML page using a default template and open the HTML editor
on it.

__d. Between the <title> tags, replace Insert title here with My Project Area portal

__e. Between the <body> tags, insert the following HTML snipped code:

<h2>Connect to:</h2>
<form action="ListOfProjectAreas" method="get">

<table>
<tr><td>Public URI:</td> <td><input type="text" name="publicURI" size="40"/></td></tr>
<tr><td>Login:</td> <td><input type="text" name="login" size="20"/></td></tr>
<tr><td>Password:</td> <td><input type="password" name="password" size="20"/></td></tr>
<tr></tr>
<tr><td><input type="submit" value="Submit"/></td></tr>

</table>
</form>

Lab 1 Page 73

IBM Software

Please notice the ListOfProjectAreas value of the action attribute of the form. It
designates the name of the servlet we will implement in the next step.

Please notice also the method we will use to connect to the server (get), it designates
the method called in the servlet.

__6. Add the libraries that your servlet will require.

__a. Because we will use in the servlet the same Apache HTTP client APIs that we used in
our previous examples, expand the org.appache.http project and select the listed jars:

__b. From the context menu, select Copy.

__c. In the Web project (MyPortal), select the WebContent/WEB-INF/lib folder.

__d. From the context menu, select Paste. At this point you should retrieve all the jars you
have copied into the lib folder:

__5. It is time to create the servlet which will connect to the OSLC server, retrieve the list of Project
Areas and return an HTML page showing this list.

__a. From the context menu of the MyPortal Web project, select New > Servlet.

Page 74

IBM Software

__b. For the Java package of the servlet, type: net.jazz.oslc.consumer.cm.servlets

__c. For the Class name of the servlet, type: ListOfProjectAreas. As mentioned earlier, this
name should be the same as the one that you specify as the value of the action attribute
in the form.

__d. Press Finish. This wizard creates a new class, subclass of
javax.servlet.http.HttpServlet and binds the URL /ListOfProjectAreas to the
designated class: net.jazz.oslc.consumer.cm.servlets.ListOfProjectAreas.

FYI, this binding is described in the file WebContent/WEB-INF/web.xml.

__5. Write the code of your servlet

A Java editor is now open against this new servlet class. This class implements 2 default
methods: doGet, to support the HTTP GET method and doPost to support the HTTP POST
method. As we mentioned earlier, our form will submit its parameters using the HTTP GET
method, which means that the doGet method will be called.

You have certainly noticed that the servlet we are implementing is supposed to implement most
of the behavior described in the Example03 (6.3 Jazz Form-based Authentication). So we will
use this opportunity to copy/paste the code of the Example03.java into our servlet and adapt it to
our needs.

__a. Edit the Example03 example located in
net.jazz.oslc.consumer.cm.client/src/net.jazz.oslc.consumer.examples/Example03.java

__b. Copy all the code contained in the main() method and paste it in the doGet method of
your servlet.

__c. In the pasted code, instead of providing URL of the server and the credentials directly in
the code, we will get them from the HttpServletRequest. So, replace the 3 lines:

String server = "https://jazz.server.com:9443/ccm";
String login = "philippe";
String password = "philippe";

with

String server = request.getParameter("publicURI").toString();
String login = request.getParameter("login").toString();
String password = request.getParameter("password").toString();

__d. Now, instead of printing the project area names on the System.out, we will build an
HTML page which will display this list as the response to the request. So replace the loop
located at the bottom on the code:

// Print out the title of each Service Provider
int length = titleNodes.getLength();
System.out.println(">> Project Areas:");

Lab 1 Page 75

IBM Software

for (int i = 0; i < length; i++) {
System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());

}

with

Page 76

IBM Software

// Build the HTML response
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<h1>Project Areas in: "+server+"</h1>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Project Areas</h1>");
 out.println("");

// Print out the title of each Service Provider
int length = titleNodes.getLength();
Node node;
Element element;
String name;
String url;
for (int i = 0; i < length; i++) {

node = titleNodes.item(i);
name = node.getTextContent();
element = (Element)(node.getParentNode());
url = element.getAttribute("rdf:about");
out.println(""+name+"");

}

 out.println("");
 out.println("</body>");
 out.println("</html>");

 out.close();

Lab 1 Page 77

IBM Software

__e. Save the file.

__6. At this point, you should still have a few errors. To fix them, you need to copy the package
containing the classes HttpUtils and NamespaceContextMap into your Web project.

__a. Switch to the Java perspective.

__b. In the net.jazz.oslc.consumer.cm.client Eclipse project, select the package
net.jazz.oslc.utils package under the src source folder.

__c. Access to the context menu and select Copy.

__d. In the MyPortal Web project, select the src source folder.

__e. In the context menu select Paste.
This action should fix all the errors that you had in your servlet.

__f. Switch back to the Java EE perspective.

__7. It is time to test the servlet.

Page 78

IBM Software

__a. Your Jazz team Server should be running. If it is not the case, start it.

__b. Select the MyPortal web project.

__c. From the context menu select Run As > Run on Server

__d. The workbench will ask to select the Application Server to run against.
Select your Tomcat server and press Finish.

The server should start and the index.html page should appear into the Eclipse
embedded web browser.

__e. Fill the fields with data then press Submit.

__f. After few seconds, a new page will appear with the list of the Project Areas contained in
the referenced repository

:

__g. At this point and using this servlet based pattern your can build type of web application
consuming OSLC apis...

__8. Shut down the RTC server by running
(<JazzTeamServer_Root_Folder>\server\server.shutdown.bat).

Conclusion
This last example concludes our two labs on how consuming
OSLC-CM API. We hope this will help you feel more comfortable
with the basics of OSLC, and encourage you to look at some of the
advanced features.

Don’t hesitate to join the http://open-services.net community and

Lab 1 Page 79

http://open-services.net/

IBM Software

follow the different specification activities…

Page 80

IBM Software

Lab 4 Implementing the OSLC APIs in a service provider

Lab Scenario
You have an assignment to extend an OSLC service provider to have
additional capabilities. You will learn how to modify the OSLC provider
implementation to provide additional dialogs and capabilities

If you have not done the setup, see OSLC Lab 1, “Setting up for OSLC
Development”.
It is recommended that you complete OSLC Lab 2, “An introduction to the
OSLC APIs” prior to this lab.

In order to complete and get the most out of this workshop, it is
recommended that you are already familiar with RTC as a user. Of
particular help would be familiarity with work items. In addition, you should
have basic familiarity with Java programming and debugging using
Eclipse. Note that OSLC can be used from any programming language
that can invoke or provide web services and not just Java; however, the
examples in this workshop are written in Java.

Lab 1 Page 81

IBM Software

4.1 Setting up the server runtime environment and running the sample
server

__1. In this lab we will mainly work with the net.jazz.oslc.provider.cm.servlet Eclipse
project. This project contains a set of samples we will explain and run during this lab.

 .

Apache Tomcat
All our examples are based on Java Servlet technology and use Apache
Tomcat Server as a test server. Other Java Servlet servers may be
appropriate

Page 82

IBM Software

__2. In the Package Explorer, select the project name and then Run->Run As->Run on Server

Lab 1 Page 83

IBM Software

__3. Select Always use this server when running this project and leave all the other default
settings.

On the Run On Server dialog select Finish.
The launcher will attempt to load a webpage in the embedded browser, when prompted select
Cancel the download and then close the embedded browser.

Restarting the sample server
This is a one time setup, for subsequent starts (or restarts) you will just
need to select Run on Server

Page 84

IBM Software

__4. Open the Firefox internet browser by double-clicking the Mozilla Firefox shortcut on the
Windows Desktop.

__5. Enter the URL: http://localhost:8080/oslc-sample/static/oslc.html
This URL will return a sample HTML OSLC-CM client consumer

Lab 1 Page 85

http://localhost:8080/oslc-sample/static/oslc.html

IBM Software

4.2 Interacting with the sample provider

__1. Enter the Service URL: http://localhost:8080/oslc-sample and select Go!

This has discovered the sample service provider document, used to enable the two buttons New
Change Request and Find Change Request

HTML & Javascript sample
This simple sample highlights service discovery and access to delegated
Web UI dialogs. It may be worth a few minutes to experiment with this.
Nothing actually gets created on the server or deleted, reloading the page
will reset to the beginning state.

Page 86

http://localhost:8080/oslc-sample

IBM Software

4.3 Modifying the provider, adding another dialog

Making code changes
You will become familiar with how to make code changes and test the
changes. You will create a new entry in the service description document,
a new creation dialog and make it the default

__1. Locate the source code to change from the Package Explorer, namely the
ReferenceServiceDescriptionXMLWriter

__2. Duplicate the function called writeCreationDialog and call the new function
writeCreationDialog2. Use whatever method that works best for you.

Coding best practices
This sample doesn’t focus on best practices to making
some of these changes. It would be recommended to
reuse the original method and refactor common aspects.

Lab 1 Page 87

IBM Software

__3. Update the function writeChangeRequestDescription to add call to this new function

__4. Update the writeCreationDialog function to remove setting the default attribute to true.

By doing this, the creation dialog entry in the service provider document will no longer be treated
as the default dialog to use.

Page 88

IBM Software

__5. Update the writeCreationDialog2 function to provide updated names on various labels (shown
in green rectangles)

By leaving the setting of the attribute default to true, this will tell consumers to use this
create dialog as the default.
Save the changes and validate there are no compilation errors. If there are errors, investigate
the cause and repair.

Lab 1 Page 89

IBM Software

4.4 Test changes

__7. Validate the server is still running

If the server is still running, no additional action is required. If the server is not running, see the
section in Error: Reference source not found.

__8. Reload the sample OSLC-CM client

__9. Enter Service URL: http://localhost:8080/oslc-sample as before, selecting Go!.

Page 90

http://localhost:8080/oslc-sample

IBM Software

__10. Next, select New Change Request from the sample page and observe the new dialog

Conclusion

You have completed lab 4. You now have an understanding of the OSLC-
CM sample provider, how to launch the sample provider server and
modify some of its source and seeing the results

Lab 1 Page 91

IBM Software

Lab 5 Introduction to OSLC RM API

Lab Scenario
You will learn how to retrieve and use some default OSLC API directly
from your favorite web browser.
If your Jazz Team Server is not running, start it now
(<JazzTeamServer_Root_Folder>\server\server.startup.bat).

OSLC-RM Release 2

OSLC RM v2.0 specification is available (http://open-
services.net/bin/view/Main/RmSpecificationV2).

For compatibility issues between 1.0 and 2.0 specifications, please read
http://open-services.net/bin/view/Main/RmSpecificationV2?
sortcol=table;table=up;up=#Version_Compatibility_with_1_0_S

RRC 4.0 is backwards compatible with OSLC-RM 1.0.

If you wrote any code based on the OSLC-RM 1.0 release, it should still
be working.

This workshop is based on the latest OSLC-RM specification, V2, to help
you use the latest features of these APIs.

Page 92

http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;table=up;up=#Version_Compatibility_with_1_0_S
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;table=up;up=#Version_Compatibility_with_1_0_S
http://open-services.net/bin/view/Main/CmSpecificationV2).This
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2

IBM Software

5.1 The Root Services document

There are many similarities between the OSLC CM and the RM
specification.

Previous labs have already introduced some of the concepts that are
common such as Service Provider element, Catalog URL, and REST
Services available.

In addition, for OSLC RM, the same Jazz Foundation REST services
apply as well such as the rootservices document, the whoami service, etc.

NOTE: Some screenshots below from the REST Client Add-on do not match the latest version. For
example, the FormattedXML tab has been replaced with Response Body (Preview) tab in version
2.0.3 of the add-on.

The rootservices document for RM is https://jazz.server.com:9443/rm/rootservices

5.2 OSLC-RM services

Let's introduce the OSLC-RM REST services implemented in the Requirements Management Server.
The specification for these APIs is defined on the web site of the Open Services for Lifecycle
Collaboration community (http://open-services.net/bin/view/Main/RmSpecificationV2).

NOTE: If you need more information on some of the concepts, refer to Lab 2.

The rootservices document for RM is https://jazz.server.com:9443/rm/rootservices

As we learned in the previous labs, the Root Services document is an XML informational resource that
lists a set of REST services and capabilities.

Lab 5 Page 93

https://jazz.server.com:9443/rm/rootservices
http://open-services.net/bin/view/Main/RmSpecificationV2
https://jazz.server.com:9443/rm/rootservices

IBM Software

__1. From the Root Services document, extract the Requirements Management Catalog URL
(pointed to by rdf:resource) of the element oslc_cm:rmServiceProviders.

__2. Copy this URL (https://jazz.server.com:9443/rm/discovery/RMCatalog) and paste it into the URL
field of REST client.

Press the Add Request Header button and add the header key accept with the value
application/xml. This header specifies you are expecting an XML response (and not an
RDF/XML).
You can also double-click on the header to edit it and adapt it to the example.

Resource Format
The Specification says (http://open-
services.net/bin/view/Main/RmSpecificationV2?
sortcol=table;table=up#Resource_Formats):

When RM Consumers request:
• application/rdf+xml RM Providers MUST respond with RDF/XML

representation without restrictions.
• application/json RM Providers MUST respond with JSON

representation as defined in the OSLC Core Representations
Guidance.

• application/xml RM Provider MUST respond with OSLC-defined
abbreviated XML representation as defined in the OSLC Core
Representations Guidance

• application/atom+xml RM Provider MUST respond with Atom
Syndication Format XML representation as defined in the OSLC Core
Representations Guidance

 The Atom Syndication Format XML representation SHOULD use
RDF/XML representation without restrictions for the atom:content entries
representing the resource representations.

For the readability of this workshop we require as often as it is possible
the application/xml media type. Feel free to use another resource format
if it is more convenient for you.

NOTE: RRC only supports RDF/XML and XML resource formats.

Page 94

http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;table=up#Resource_Formats
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;table=up#Resource_Formats
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;table=up#Resource_Formats
https://jazz.server.com:9443/rm/discovery/RMCatalog

IBM Software

Press the Add Request Header button a second time and declare a new header OSLC-Core-
Version: 2.0. The header indicates to the OSLC producer that you are expecting a response
based on the latest release of the OSLC-RM specification (http://open-
services.net/bin/view/Main/OslcCoreSpecification#Specification_Versioning).

Then press OK. At this moment the Firefox REST client UI should look like this:

__3. Press the Send button. The REST service response header will be displayed at on bottom part
of the UI. If the Status Code doesn’t show the value “200 OK”, please check out the URL and the
headers you have provided.

__4. Press the “Formatted XML” tab to display the response body.

The resulting document contains a list of oslc:ServiceProvider elements that point to the
documents which contain the actual service descriptions.

Lab 5 Page 95

IBM Software

In the case of RRC, there is one ServiceProvider element for each RM Project.
Typically, an application would use the title of this element to allow the user to choose between
the RM projects.

__5. Press the “Response Body” tab to display the response body source text.

__6. From this view, you should be able to retrieve the Service Provider element for one of the RM
Projects already created in the Jazz Team Server such as the JKE Banking (Requirements)
Project and copy the URL associated to the attribute rdf:about defined in the element
oslc:ServiceProvider .

__7. Paste the Service Provider URL in the URL field of the REST client and keep the headers.

Page 96

IBM Software

__8. Press the Send button. The response body will display a Service Provider document
(http://open-services.net/bin/view/Main/OslcCoreSpecification#Service_Provider_Resources)
listing all the REST services available for this Service Provider (alias RM Project):

Lab 5 Page 97

http://open-services.net/bin/view/Main/OslcCoreSpecification#Service_Provider_Resources

IBM Software

__9. You will find 4 kinds of services:

__a. Creation Factory: Enables clients to create new resources:

__b. Query Capability: Enables clients to query across a collection of resources. Note: For
RRC v4.0 and above, there is a new capability for query of folders.

Page 98

IBM Software

__c. Selection Dialog: Enables clients to select a resource via UI

__d. Creation Dialog: Enables clients to create a resource via UI

Lab 5 Page 99

IBM Software

5.3 Search for Requirements

In this section, we will describe how we can query for requirements using the corresponding OSLC-RM
REST service.

__1. Scroll back to the oslc:QueryCapability element in the Service Provider services document.

__2. From this element, look for the oslc:queryBase element and copy the URL associated to the
attribute rdf:resource defined.

__3. Paste this URL into in the URL field of the REST client and keep the headers.

Page 100

IBM Software

__4. Press the Send button, the response body will display ALL the artifacts (rdfs:member elements
) listed for the corresponding project.

__5. Locate the dcterms:title element. It indicates the number of Query Results.

This REST service supports the following parameters (http://open-
services.net/bin/view/Main/OSLCCoreSpecQuery): oslc.searchTerms, oslc.where, oslc.select,
oslc.properties and oslc.prefix.

These parameters offer the possibility to filter the artifacts you are looking for and which data to fetch.

__6. Lets try to retrieve all the requirements which contain the word “donor” in it.
To do so, complete the Query URL with the following parameter:

 &oslc.searchTerms="donor"
So the URL should look like this:

https://jazz.server.com:9443/rm/views?
oslc.query=true&amp;projectURL=https%3A%2F
%2Fmagellan3.bocaraton.ibm.com%3A9443%2Fjts%2Fprocess%2Fproject-areas
%2F_4QtrwLE1EeC--cDfe44EPg&oslc.searchTerms="donor"

Lab 5 Page 101

http://open-services.net/bin/view/Main/OSLCCoreSpecQuery
http://open-services.net/bin/view/Main/OSLCCoreSpecQuery

IBM Software

__7. Press the Send button. the response body will display a subset of these requirements:
The dcterms:title element displays how many results were found.

__8. If we complete the previous request with the oslc.select parameter, we will be able to specify
the subset of attributes/elements we want to fetch from the server.

For example, let's say you are only interested in the resource name (dcterms:title). In this
case, complete the previous URL with the following expression:

&oslc.prefix=dcterms=<http://purl.org/dc/terms/>&oslc.select=dcterms:ti
tle

Note how we had to define the namespace context with oslc.prefix prior to being able to use
dcterms.title in the query.

So the URL should look like this:
https://magellan3.bocaraton.ibm.com:9443/rm/views?
oslc.query=true&projectURL=https%3A%2F%2Fmagellan3.bocaraton.ibm.com
%3A9443%2Fjts%2Fprocess%2Fproject-areas%2F_4QtrwLE1EeC--
cDfe44EPg&oslc.searchTerms="donor"&oslc.prefix=dcterms=<http://purl.org
/dc/terms/>&oslc.select=dcterms:title

Page 102

IBM Software

__9. Press the Send button. The REST client will only display the requested attributes:

__10. Now, we want to demonstrate how to retrieve all the attributes of a requirement. Copy the URL
of a rdfs:member previously listed and paste it in the URL field:

__11. And press Send, the Formatted XML tab should display all the attributes of the requirement

__12. When retrieving a resource,it is possible to do a partial retrieval using a HTTP URL key=value
pair with oslc.properties. Let's try an example using the same URL from the previous step.
Append the following to the URL:

?oslc.prefix=dcterms=<http://purl.org/dc/terms/>

&oslc.properties=dcterms:title

Lab 5 Page 103

http://purl.org/dc/terms/

IBM Software

__13. Press Send, and the Formatted XML tab should display only the title of the requirement.

Page 104

IBM Software

5.4 Requirement Selection Dialog

In this section, we will describe how we can invoke the selection dialog for requirement artifacts using the
corresponding OSLC-RM REST service.

__1. Scroll back to the oslc:selectionDialog element in the Service Provider services document.

__2. From this element, look for the oslc:dialog element and copy the URL associated to the
attribute rdf:resource defined.

__3. Paste this URL into in a browser and append the following to the URL: #oslc-core-
windowName-1.0

__4. The following dialog will be displayed which is the Requirement Selection dialog.

Lab 5 Page 105

IBM Software

5.5 Creation Dialog

In this section, we will describe how we can invoke the creation dialog for requirements using the
corresponding OSLC-RM REST service.

__11. Scroll back to the oslc:creationDialog element in the Service Provider services document.

__12. From this element, look for the oslc:dialog element and copy the URL associated to the
attribute rdf:resource defined.

__13. Paste this URL into in a browser and append the following to the URL: #oslc-core-
windowName-1.0

__14. The following dialog will be displayed which is the Requirement Creation dialog.

OSLC Traceability

Note how these last 2 dialogs look familiar. They are the same
dialogs that are used by Rational Team Concert when it plays the role
of an OSLC consumer. RTC presents these dialogs to a user when it
is either 1) searching for existing or 2) creating a new RM resource for
the purpose of establishing a traceability link between a workitem and
that RM resource.

Page 106

IBM Software

5.6 Appendix

Here are some more examples related to query function. As we learned in an earlier section, you can
filter the artifacts you are looking for and which data to fetch.

Append the following to the QueryCapability URI to further refine a query. Note: The special character #
must be URL encoded as %23.

Find artifact by ID, display all fields

&oslc.prefix=dcterms=<http://purl.org/dc/terms/>&oslc.select=*&oslc.where=dcterms:identifier=4

Find artifact by title, using fulltext search and display all fields

&oslc.prefix=dcterms=<http://purl.org/dc/terms/>&oslc.select=*&oslc.searchTerm=”donor”

Query for all requirements in a specific project

&oslc.prefix=rdf=<http://www.w3.org/1999/02/22-rdf-syntax-ns
%23>,dcterms=<http://purl.org/dc/terms/>&oslc.select=*&oslc.where=rdf:type=<http://open-
services.net/ns/rm%23Requirement>

Query for all artifacts that were modified at or later than 08/01/2012 at 21:50:40.979. This must
specify the date in the following format : ^^xsd:dateTime

&oslc.prefix=dcterms=<http://purl.org/dc/terms/>,oslc_rm=<http://open-services.net/ns/rm
%23>&oslc.select=dcterms:title,dcterms:modified&oslc.where=dcterms:modified>="2012-08-
01T21:51:40.979Z"%5E%5Exsd%3AdateTime

Lab 5 Page 107

http://purl.org/dc/terms/
http://purl.org/dc/terms/

IBM Software

Conclusion

You have completed lab 5. You now have an initial understanding of the
OSLC RM APIs.
In the next lab you will learn how to programmatically access this API.

Page 108

IBM Software

Lab 6 Access OSLC RM APIs programmatically

Lab Scenario
You will learn how to access OSLC RM APIs programmatically and you
will build your first OSLC RM Consumer.
If your Jazz Team Server is not running, start it now
(<JazzTeamServer_Root_Folder>\server\server.startup.bat).

6.1 Accessing the Root Services document

This first example describes how to fetch the content of a URL, and more particularly, how to fetch the
Root Services document using the Apache HTTP Client API.

__1. If not already running, start the RTC Eclipse client (<TeamConcert_Root_Folder> \eclipse.exe).
When prompted, select the Eclipse workspace used previously in Lab 2 such as
C:\RTC30Dev\DevWS.

__2. In the Package Explorer view, expand the src/net.jazz.oslc.consumer.examples source
package of the net.jazz.oslc.consumer.rm.client Eclipse project and then double click the
Example01.java file.

__3. First change the RRC Server URL, if necessary, by changing the value of the String server
variable. For example, if your RM server is accessed as https://jazz.server.com:9443/rm then
the initialization of the server variable would be

 String server = "https://jazz.server.com:9443/rm";

__4. Make sure you save the file (Ctrl-S).

Lab 6 Page 109

https://jazz.server.com:9443/ccm

IBM Software

__5. The following snippet of code is extracted from the main method.

// Setup the HttClient
HttpClient httpclient = new DefaultHttpClient();
// Disabling SSL Certificate Validation
HttpUtils.setupLazySSLSupport(httpclient);
// Setup the HTTP GET method
HttpGet rootServiceDoc = new HttpGet(rootServices);
rootServiceDoc.addHeader("Accept", "application/rdf+xml");
rootServiceDoc.addHeader("OSLC-Core-Version", "2.0");

HttpResponse response;
try {

// Execute the request
response = httpclient.execute(rootServiceDoc);
System.out.println(">> HTTP Status code:" + response.getStatusLine());

if (response.getStatusLine().getStatusCode() == 200) {
System.out.println(">> HTTP Response Headers: ");
HttpUtils.printResponseHeaders(response);

System.out.println(">> HTTP Response Body: ");
HttpUtils.printResponseBody(response);

} else {
// Release allocated resources
response.getEntity().consumeContent();

}
} catch (ClientProtocolException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
} finally {

// Shutdown the HTTP connection
httpclient.getConnectionManager().shutdown();

}

__6. To get access to the Apache HTTP Client API, for executing an HTTP method, we need to
create an instance of org.apache.http.impl.client.DefaultHttpClient:

// Setup the HttClient
HttpClient httpclient = new DefaultHttpClient();

__7. The Jazz Team Server uses the SSL (Secure Socket Layer) protocol. If we try to access any
HTTPS URL, we will get an SSL certificate exception. It is for this reason that the client needs to
specify how he wants to handle the certificates.
For the purpose of the demo, we have defined some code which disables the certificate
validation by overwriting the default behavior to trust any certificate.

// Disabling SSL Certificate Validation
HttpUtils.setupLazySSLSupport(httpclient);

This behavior is implemented by the HttpUtils.setupLazySSLSupport static method.

Page 110

IBM Software

__8. The next line creates an instance of org.apache.http.client.methods.HttpGet which refines the
call to the HTTP GET method. The call is initialized with the URI of the RM Root Services
document. The request is completed with the header specifying the expected media type result
and expected format base of the OSLC-RM Release 2.0 specifications.

// Setup the HTTP GET method
HttpGet rootServiceDoc = new HttpGet(“https://jazz.server.com:9443/rm”);
rootServiceDoc.addHeader("Accept", "application/rdf+xml");
rootServiceDoc.addHeader("OSLC-Core-Version", "2.0");

__9. The next line sends/executes the GET. The response of the http method is returned in an
instance of org.apache.http.HttpResponse.

// Execute the request
HttpResponse response = httpclient.execute(rootServiceDoc);

__10. The next line prints out the status code of the HTTP response

 System.out.println(">> HTTP Status code: " + response.getStatusLine());

__11. If the response is OK (status code = 200) then the code prints the response headers
(HttpUtils.printResponseHeaders) and the response body (HttpUtils.printResponseBody).

System.out.println(">> HTTP Response Headers: ");
HttpUtils.printResponseHeaders(response);

System.out.println(">> HTTP Response Body: ");
HttpUtils.printResponseBody(response);

__12. If the response is an error then the code releases any created resources:

// Release allocated resources
response.getEntity().consumeContent();

__13. Finally, the last line shuts down the HTTP client by releasing the connections.

// Shutdown the HTTP connection
httpclient.getConnectionManager().shutdown();

Lab 6 Page 111

IBM Software

__14. Now that we have a good understanding of the code, lets run it.

__a. Select the Example01.java file in the Package Explorer:

__b. Press the Run as… button located on toolbar

__c. Select run the example as a Java Application and press OK.

Page 112

IBM Software

__d. The Console view will appear in the bottom part of the workbench displaying the
example print out.

The log should look like this:

>> Example01: Accessing Root Services document with HttpClient
- Root Services URI: https://magellan3.bocaraton.ibm.com:9443/rm/rootservices

>> HTTP Status code:HTTP/1.1 200 OK
>> HTTP Response Headers:

- Server: Apache-Coyote/1.1
- OSLC-Core-Version: 2.0
- Expires: Wed, 28 Sep 2011 15:08:48 EDT
- Cache-Control: public
- Content-Type: application/rdf+xml
- Transfer-Encoding: chunked
- Date: Wed, 28 Sep 2011 19:03:48 GMT

>> HTTP Response Body:
<?xml version="1.0" encoding="UTF-8"?>
<rdf:Description

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/terms/"
xmlns:oslc_rm="http://open-services.net/xmlns/rm/1.0/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:jfs="http://jazz.net/xmlns/prod/jazz/jfs/1.0/"
xmlns:jd="http://jazz.net/xmlns/prod/jazz/discovery/1.0/"
xmlns:jp06="http://jazz.net/xmlns/prod/jazz/process/0.6/"
xmlns:jdb="http://jazz.net/xmlns/prod/jazz/dashboard/1.0/"
xmlns:ju="http://jazz.net/ns/ui#"
xmlns:rm="http://www.ibm.com/xmlns/rdm/rdf/"
xmlns:fp="http://jazz.net/xmlns/prod/jazz/frontingapp/process/1.0/"
xmlns:jp="http://jazz.net/xmlns/prod/jazz/presentation/1.0/"

Lab 6 Page 113

IBM Software

xmlns:jp10="http://jazz.net/xmlns/prod/jazz/process/1.0/"
rdf:about="https://magellan3.bocaraton.ibm.com:9443/rm/rootservices">
<dc:title>Requirements Management</dc:title>
<dc:description>The Requirements Management application implements the services and web interfaces for

Requirements Management. In some cases only a subset of these capabilities may be available to you depending
on the particular product license key(s) you have been assigned by the server administrator.</dc:description>

<oslc_rm:majorVersion>3</oslc_rm:majorVersion>
<oslc_rm:version>3.0.1.0</oslc_rm:version>
<oslc_rm:buildVersion>3.0.1 (I20110602_0919)

…/...

</rdf:Description>

6.2 Retrieve the Service Provider catalog using XPath

This new example shows how an OSLC consumer can retrieve an element or an attribute of an element
in an XML representation, such the Root Services document.

Actually, this example uses the XPath language to retrieve the Service Provider catalog listed by the
attribute rdf:resource of the element oslc_rm:cmServiceProviders.

The W3C XPath language () has been defined for querying XML documents to select any node
(element or attribute) or list of nodes. Here are few XPath expression examples:

Expression Description
foo Selects all the child nodes named foo.
/foo Selects from the root node the nodes named foo.
//foo Selects nodes named foo no matter where they are in the

document
@att Selects the attribute node named att.
foo/bar Selects all the nodes named bar having a parent node named

foo.
//foo[@att] Select all the nodes named foo no matter where they are

having an attribute named att.
//foo [@att="val”] Select all the nodes named foo no matter where they are

having an attribute named att with the value val.

XPath tester
if you need to test an XPath expression against some XML code, there
are several interesting testers on the web.
• We found a first one which requires to upload the XML file to parse:

http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
• We found another one which accepts a copy/paste of the XML

content to parse: http://www.futurelab.ch/xmlkurs/xpath.en.html

Page 114

http://www.futurelab.ch/xmlkurs/xpath.en.html
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
http://www.w3.org/TR/xpath/

IBM Software

For example, knowing that the Root Services document has the following tag structure:

<?xml version="1.0"?>
<rdf:Description …>
…/…

<!-- Catalog of Requirements Management Service Providers on this server -->

<oslc_rm:rmServiceProviders rdf:resource="https://jazz.server.com:9443/rm/discovery/RMCatalog" />
…/…

</rdf:Description>

The XPath expression to retrieve the node defining the Service Provider catalog will be:

/rdf:Description/oslc_rm:rmServiceProviders/@rdf:resource

This expression means: “Select the attribute node named rdf:resource from the element node
named oslc_rm:rmServiceProviders, child of the root element named rdf:Description.”

Let see the code for the next example now…

__1. In the Package Explorer view, open the Example02.java file and look at the main method:

// Define the XPath evaluation environment
XPathFactory factory = XPathFactory.newInstance();
XPath xpath = factory.newXPath();
xpath.setNamespaceContext(

new NamespaceContextMap(new String[]
{ "rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "oslc_rm","http://open-services.net/xmlns/rm/1.0/"}));

// Parse the response body to retrieve the catalog URI
InputSource source = new InputSource(response.getEntity().getContent());
Node attribute = (Node) (xpath.evaluate("/rdf:Description/oslc_rm:rmServiceProviders/@rdf:resource",

source, XPathConstants.NODE));

// Print out the Service Provider catalog URI
System.out.println(">> Catalog URI: " + attribute.getTextContent());

__2. The first lines create an instance of an XPath evaluation environment. This environment is set up
to be able to parse and understand nodes using the rdf and oslc-rm namespaces.

XPathFactory factory = XPathFactory.newInstance();
XPath xpath = factory.newXPath();

Lab 6 Page 115

IBM Software

__3. The next instruction sets the namespace context. This interface is used to retrieve the
namespaces corresponding to the prefixes used by the XPath. In this example, the XPath is
/rdf:Description/oslc_rm:rmServiceProviders/@rdf:resource. It references two
prefixes “rdf” and “oslc_rm”. So, the NamespaceContext defines the mapping between these
prefixes and the namespaces (xlmns declarations) used in the document that the XPath will
parse.

xpath.setNamespaceContext(
new NamespaceContextMap(new String[]

{ "rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "oslc_rm", "http://open-services.net/xmlns/rm/1.0/"}));

__4. The next lines parse the response body (response.getEntity().getContent()) using the
XPath.evaluate method. This method takes 3 arguments:

// Parse the response body
InputSource source = new InputSource(response.getEntity().getContent());
Node attribute = (Node) (xpath.evaluate(
 "/rdf:Description/oslc_rm:rmServiceProviders/@rdf:resource",
 source, XPathConstants.NODE));

__a. The XPath expression to evaluate, describing the node(s) to select. In the example code,
we provide the XPath to retrieve the URI of the Service Provider catalog:

"/rdf:Description/oslc_rm:rmServiceProviders/@rdf:resource"

__b. The source to parse.

This source can be either an org.xml.sax.InputSource or directly a
DOM structure like an org.w3c.dom.Document or an
org.w3c.dom.Element.
If you know that you will have to parse the same document several times,
we recommend creating the DOM structure using your favorite SAX
parser then reuse the DOM document each time you need it.

__c. The expected return type.

This return type can take 2 values:
- XPathConstants.NODE then the method will return the first

Node found.
- XPathConstants.NODESET then the method will return a

NodeList of all the nodes found.
In the example code, we are looking for the first attribute found.

__5. The last line prints out the value associated the found attribute. This value should be the Service
Provider catalog URI:

// Print out the Service Provider catalog URI
System.out.println(">> Catalog URI: " + attribute.getTextContent());

Page 116

IBM Software

__6. Now that we have a good understanding of the code, lets run it.

__a. Double-click the Example02.java file in the Package Explorer.

__b. First change the RRC Server URL if necessary by changing the value of the String
server variable. For example, if your RRC server is accessed as
https://jazz.server.com:9443/rm then the initialization of the server variable would be

 String server = "https://jazz.server.com:9443/rm";

__c. Make sure you save the file (Ctrl-S).

__d. Run the sample as a Java application

__e. The Console view will print out the catalog URI:.

6.3 Jazz Form-based Authentication

In the next example, we will see how to authenticate and pass the Jazz Team Server (JTS) security
mechanisms defined by the foundation core services. Then we should be able to reach any protected
document like the Service Provider catalog document.

This example prints out the titles of each Service Provider (alias Project Area) stored in the JTS we are
connected to.

Contrary to the Root Services document, the Service Provider catalog document is a protected
document, so the client needs to authenticate with the JTS to be able to access it.

JTS uses a Form-Based Authentication. This authentication has to go thru three steps:

Lab 6 Page 117

https://jazz.server.com:9443/ccm

IBM Software

__1. The client requests a protected resource.

__2. If the client is not authenticated, the server responds a redirect to the login page, and the client
has to fill the form and submit it to the server.

__3. If the login has succeeded, the client submits a request the protected resource again and should
get it back.

This behavior is implemented by the sendGetForSecureDocument and doRRCOAuth method stored in the
HttpUtils class. If you don’t want to dig into this implementation, feel free to directly skip to step (30).

Page 118

IBM Software

__4. In the Package Explorer view, open the HttpUtils.java file and scroll to the doRCCOAuth
method. To simplify the code, we have removed all the printouts from the snipped code.

static String AUTHURL = "X-jazz-web-oauth-url";
// Step (1): Request the protected resource
HttpResponse documentResponse = httpClient.execute(request);

if (documentResponse.getStatusLine().getStatusCode() == 200 ||
documentResponse.getStatusLine().getStatusCode() == 401) {

Header header = documentResponse.getFirstHeader(AUTHURL);

if ((header!=null) {
documentResponse.getEntity().consumeContent();
//First GET
HttpGet request2 = new HttpGet(header.getValue());
HttpClientParams.setRedirecting(request2.getParams(), false);
documentResponse = httpClient.execute(request2);
documentResponse.getEntity().consumeContent();

//Second GET
Header location = documentResponse.getFirstHeader("Location");
HttpGet request3 = new HttpGet(location.getValue());
HttpClientParams.setRedirecting(request3.getParams(), false);
documentResponse = httpClient.execute(request3);
documentResponse.getEntity().consumeContent();

//POST to login form
// The server requires an authentication: Create the login form
HttpPost formPost = new HttpPost(jtsURI+"/j_security_check");
List<NameValuePair> nvps = new ArrayList<NameValuePair>();
nvps.add(new BasicNameValuePair("j_username", login));
nvps.add(new BasicNameValuePair("j_password", password));
formPost.setEntity(new UrlEncodedFormEntity(nvps, HTTP.UTF_8));

// Step (2): The client submits the login form
HttpResponse formResponse = httpClient.execute(formPost);
formResponse.getEntity().consumeContent();

//Third GET
HttpGet request4 = new HttpGet(location.getValue());
HttpClientParams.setRedirecting(request4.getParams(), false);
documentResponse = httpClient.execute(request4);
documentResponse.getEntity().consumeContent();

//Second Post
Header location3 = documentResponse.getFirstHeader("Location");
Map<String,String> oAuthMap = getQueryMap(location3.getValue());
String oauthToken = oAuthMap.get("oauth_token");
String oauthCallback = oAuthMap.get("oauth_callback");;

Lab 6 Page 119

IBM Software

// The server requires an authentication: Create the login form
HttpPost formPost2 = new HttpPost(jtsURI+"/j_security_check");
formPost2.getParams().setParameter("oauth_token", oauthToken);
formPost2.getParams().setParameter("oauth_callback", oauthCallback);
formPost2.getParams().setParameter("authorize", "true");
formPost2.addHeader("Content-Type","application/x-www-form-urlencoded;charset=UTF-8");

formResponse = httpClient.execute(formPost2);
formResponse.getEntity().consumeContent();

header = formResponse.getFirstHeader("Content-Length");
if ((header!=null) && (!("0".equals(header.getValue())))) {

// The login failed
throw new InvalidCredentialsException("Authentication failed");

} else {
// The login succeed
// Step (3): Request again the protected resource
formResponse.getEntity().consumeContent();
return true; //REDO YOUR REQUEST

}
}

}
return false;

__5. For the first step, as for any other document, the client tries to reach the document:

// Step (1): Request the protected resource
HttpResponse documentResponse = httpClient.execute(documentGet);

Page 120

IBM Software

__6. If the request didn’t return any error, the client checks out if an authentication is required. This
check will consist in verifying the presence of the X-jazz-web-oauth-url HTTP response header.
If the value of this header is not NULL then the client must submit a form-based login
(https://jazz.net/wiki/bin/view/Main/JFSCoreSecurity#User_Authentication).
if the authentication is not required, the client returns the HTTP response.

if (documentResponse.getStatusLine().getStatusCode() == 200 ||
documentResponse.getStatusLine().getStatusCode() == 401) {
Header header = documentResponse.getFirstHeader("X-jazz-web-oauth-url");

if ((header!=null) {
…

} else {
return documentResponse;

}

__7. The next step consists of retrieving some information via 2 GET calls and then filling in and
POSTing the authentication form:

//First GET
HttpGet request2 = new HttpGet(header.getValue());
HttpClientParams.setRedirecting(request2.getParams(), false);
documentResponse = httpClient.execute(request2);
documentResponse.getEntity().consumeContent();

//Second GET
Header location = documentResponse.getFirstHeader("Location");
HttpGet request3 = new HttpGet(location.getValue());
HttpClientParams.setRedirecting(request3.getParams(), false);
documentResponse = httpClient.execute(request3);
documentResponse.getEntity().consumeContent();
//POST to login form
// The server requires an authentication: Create the login form
HttpPost formPost = new HttpPost(jtsURI+"/j_security_check");
List<NameValuePair> nvps = new ArrayList<NameValuePair>();
nvps.add(new BasicNameValuePair("j_username", login));
nvps.add(new BasicNameValuePair("j_password", password));
formPost.setEntity(new UrlEncodedFormEntity(nvps, HTTP.UTF_8));
// Step (2): The client submits the login form
HttpResponse formResponse = httpClient.execute(formPost);

__8. Then the client needs to retrieve some information from thefirst POST's response
header:location URI. Then, do a GET on this location URI to retrieve the following:
oauth_token, oauth_callback. Using this token and the callback, prepare a 2nd POST to the login
form.

//Third GET
HttpGet request4 = new HttpGet(location.getValue());
HttpClientParams.setRedirecting(request4.getParams(), false);
documentResponse = httpClient.execute(request4);
documentResponse.getEntity().consumeContent();

Lab 6 Page 121

https://jazz.net/wiki/bin/view/Main/JFSCoreSecurity#User_Authentication

IBM Software

__9. Send the second POST to the location URI retrieved from the last GET along with the oAuth
token and the oAuthCallback as parameters.

//Second Post
Header location3 = documentResponse.getFirstHeader("Location");
Map<String,String> oAuthMap = getQueryMap(location3.getValue());
String oauthToken = oAuthMap.get("oauth_token");
String oauthCallback = oAuthMap.get("oauth_callback");;

// The server requires an authentication: Create the login form
HttpPost formPost2 = new HttpPost(jtsURI+"/j_security_check");
formPost2.getParams().setParameter("oauth_token", oauthToken);
formPost2.getParams().setParameter("oauth_callback", oauthCallback);
formPost2.getParams().setParameter("authorize", "true");
formPost2.addHeader("Content-Type","application/x-www-form-urlencoded;charset=UTF-8");
formResponse = httpClient.execute(formPost2);
formResponse.getEntity().consumeContent();

__10. If the login didn’t fail, then the client can request the protected document a second time, and
should receive the expected response:

header = formResponse.getFirstHeader("Content-Length");
if ((header!=null) && (!("0".equals(header.getValue())))) {

// The login failed
throw new InvalidCredentialsException("Authentication failed");

} else {
// The login succeed
// Step (3): Request again the protected resource
formResponse.getEntity().consumeContent();
return true; //REDO YOUR REQUEST

}

At this point, we should be able to understand the third example.

Page 122

IBM Software

__11. In the Package Explorer view, open the Example03.java file and look at the main method:

// Setup the catalog request
HttpGet catalogDoc = new HttpGet(serviceProvidersCatalog);
catalogDoc.addHeader("Accept", "application/xml");
catalogDoc.addHeader("OSLC-Core-Version", "2.0");

// Access to the Service Providers catalog
HttpResponse catalogResponse

= HttpUtils.sendGetForSecureDocument(server, catalogDoc, login, password, httpclient);
if (catalogResponse.getStatusLine().getStatusCode() == 200) {

// Define the XPath evaluation environment
XPath xpath2 = factory.newXPath();
xpath2.setNamespaceContext(

new NamespaceContextMap(new String[]
{ "oslc", "http://open-services.net/ns/core#",

"dcterms", "http://purl.org/dc/terms/"}));

// Parse the response body to retrieve the Service Provider
source = new InputSource(catalogResponse.getEntity().getContent());
NodeList titleNodes = (NodeList) (xpath2.evaluate(

serviceProviderTitleXPath, source,
XPathConstants.NODESET));

// Print out the title of each Service Provider
int length = titleNodes.getLength();
System.out.println(">> Project Areas:");
for (int i = 0; i < length; i++) {

System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());
}

}

__a. Once the client has retrieved the URI of the Service Provider catalog
(serviceProvidersCatalog), it can fetch the catalog.
Because the catalog is a protected document, the client uses the Form Based
authentication code we have previously described. The associated Media Type is
application/xml.

// Access to the Service Providers catalog
HttpResponse catalogResponse

= HttpUtils.sendGetForSecureDocument(server, catalogDoc, login, password, httpclient);

Lab 6 Page 123

IBM Software

__b. If the server didn’t return an error, then the client can parse the response body and
extract from the Service Provider catalog document the title nodes of each Service
Provider (alias Project Area) and print out the Service Provider title:

// Define the XPath evaluation environment
XPath xpath2 = factory.newXPath();
xpath2.setNamespaceContext(

new NamespaceContextMap(new String[]
{ "oslc", "http://open-services.net/ns/core#",

"dcterms", "http://purl.org/dc/terms/"}));

// Parse the response body to retrieve the Service Provider
source = new InputSource(catalogResponse.getEntity().getContent());
NodeList titleNodes

= (NodeList) (xpath2.evaluate(
"//oslc:ServiceProvider/dcterms:title",
source, XPathConstants.NODESET));

// Print out the title of each Service Provider
int length = titleNodes.getLength();
System.out.println(">> Project Areas:");
for (int i = 0; i < length; i++) {

System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());
}

The developer knows that the Service Provider catalog document has the following
structure:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:ns1="http://jazz.net/xmlns/prod/jazz/process/1.0/"

xmlns:oslc="http://open-services.net/ns/core#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<oslc:ServiceProviderCatalog rdf:about="https://jazz.server.com:9443/ccm/oslc/workitems/catalog">

<dcterms:title rdf:parseType="Literal">Project Areas</dcterms:title>
<dcterms:publisher>

.../...
</dcterms:publisher>
<oslc:domain rdf:resource="http://open-services.net/ns/cm#"/>
<oslc:serviceProvider>

<oslc:ServiceProvider rdf:about= "https://jazz.server.com:9443/ccm/oslc/.../services.xml">
<dcterms:title rdf:parseType="Literal">JUnit Project</dcterms:title>
<oslc:details

rdf:resource="https://jazz.server.com:9443/ccm/process/..."/>
<ns1:consumerRegistry rdf:resource="https://jazz.server.com:9443/rm/process/.../links"/>

</oslc:ServiceProvider>
</oslc:serviceProvider>

</oslc:ServiceProviderCatalog>
</rdf:RDF>

Therefore the XPath expression to retrieve the dcterms:title nodes of the Service
Provider could be:

Page 124

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://open-services.net/ns/core
http://jazz.net/xmlns/prod/jazz/process/1.0/
http://purl.org/dc/terms/

IBM Software

"/rdf:RDF/oslc:ServiceProviderCatalog/oslc:serviceProvider/oslc:ServiceProvider/dcterms:title"

We could also simplify this expression with the following XPath expression:

"//oslc:ServiceProvider/dcterms:title"

This expression means: select all the oslc_disc:ServiceProvider nodes, no
matter where they are, then select their dcterms:title child node. In this particular
case, we could even simplify to the following XPath expression:

//dcterms:title

Actually, the above expression means: select all the dcterms:title nodes no matter
where they are.

__12. Now that we have a good understanding of the code, lets run it.

__a. Select the Example03.java file in the Package Explorer

__b. If necessary first change the values of the following variables to match your setup:

 String server = https://jazz.server.com:9443/rm;
String login = "clmadmin";
String password = "clmadmin";

Lab 6 Page 125

https://rtc:9443/ccm

IBM Software

__c. Make sure you save the file (Ctrl-S).

__d. Run it as Java application.

The Console view will print out the titles of the RM Projects currently stored in the Jazz
Team Server:.

Page 126

IBM Software

6.4 Requirement Create/Modify

In this example, we will describe how to create a requirement resource using the one of the REST
services. The REST service we should use is called CreationFactory. Remember that we introduced
these REST services in Lab 5.

NEW for RRC 4.0 – Folder support was added in this release. Example04 has been modified to use this
new folder API if the sample is run against a 4.0 server.

Once the requirement resource is created, it will be modified and stored back on the server.

__1. In the Package Explorer view, open the Example04.java file and scroll to the run method. To
simplify the reading of the code, we have split the code into a set of methods describing all of
the steps to fetch the creation factory, create a folder and create a requirement. NOTE: A
new step has been added to check for the version of the server we are using to run the sample.
If the server is 4.0, Step 3 creates a folder where the new requirement will be created.

// Step (1) : Retrieve the Service Providers catalog
String catalogURI = getServiceProviderCatalog();
System.out.println(">> Service Providers Catalog: "+catalogURI);

// Step (2) : Retrieve the designated Service Provider (Project Area)
String serviceProviderURI = getServiceProvider(catalogURI, projectAreaName);
System.out.println(">> RM Project ["+projectAreaName+"]: "+projectAreaURI);

// Step (3) : (Optional) Create folders
// should only be used with RM version 4.0 or above
String baseFolder = null;
String sourceFolderUrl = null;
String targetFolderUrl = null;
if (this.version >= 4.0f) {

basefolder = createFolder(serviceProviderURI, "TestBaseOSLCWS", null);
 sourceFolderUrl = createFolder(serviceProviderURI, "SourceFolder" baseFolder);

targetFolderUrl = createFolder(serviceProviderURI, "TargetFolder", baseFolder);
}

// Step (4) : Find a creation factory and create requirement
String requirementURL = createRequirement(serviceProviderURI);
System.out.println(">> Requirement ["+requirementURL+"]");

Lab 6 Page 127

IBM Software

__2. We will not spend time on the 2 first steps which have been explained during the previous labs.
Step (4) is interesting because the code finds the creation factory and creates a requirement.
Let's examine the createRequirement(...) method.

__a. First, we have to locate the creationFactory URL for the specific service provider or RM
project we are interested in as the destination of this new artifact.

// Define the XPath evaluation environment
XPath xpath = getXpathNamespace();

//Resource Type
String resourceType = "http://open-services.net/ns/rm#Requirement";

//This is the URL we can use to post requirements to (note there could be more than one, we just pick the first
String requirementFactoryUrl ="//oslc:CreationFactory/oslc:resourceType[@rdf:resource=\"" + resourceType
+"\"]/../oslc:creation/@rdf:resource";

//This path tells us all the different types we can use to create our requirement
String requirementfactoryShapes = "//oslc:CreationFactory/oslc:resourceType[@rdf:resource=\"" +
resourceType +"\"]/../oslc:resourceShape/@rdf:resource";

// Retrieve the designated Service Provider
InputSource source = new InputSource(response.getEntity().getContent());

Document doc = parse(source);
response.getEntity().consumeContent();

//Get the Creation Factory URL
Node evaluate = (Node)xpath.evaluate(requirementFactoryUrl, doc, XPathConstants.NODE);
String factoryURI = evaluate.getTextContent();
System.out.println("Creation Factory URI->> " + evaluate.getTextContent());

__b. Then, get the available shapes. Shapes are analogous to Artifact Types in the RRC UI.
Each RM project based on its template has a specific set of Artifact types. See Project
Properties of a specific RM project to understand its defined artifact types. For this
example, we are just going to choose the first one on the list. Note: It may vary
depending on the RM project you are using in your workshop experience.

//Get the available shapes for this creation factory
NodeList paNode = (NodeList)(xpath.evaluate(requirementfactoryShapes, doc, XPathConstants.NODESET));
for (int i = 0; i < paNode.getLength(); i++) {

//These all correspond to an artifact type URI in RRC
System.out.println("Resource Shape URI->> " + paNode.item(i).getTextContent());

}

__c. Now, we pass the shape (or type of requirement) URL that we want to create to another
method: createRequirementContentFromShape(..)

//For this example just use the first shape
String shapeURL = paNode.item(0).getTextContent();

Page 128

IBM Software

//Create our content from the shape
final String content = createRequirementContentFromShape(shapeURL);
System.out.println("New Requirement Content ->>\n" + content);

__3. In the createRequirementContentFromShape(..) method, we add code that will build the
requirement request which will be sent to the server.

__a. In this next block of code, we are deciding to include a title, description (which are both
required) and an optional property, the primaryText. Primary Text is the 'rich' text that
contains the body of a requirement document.

//For this example, lets assume we just want to have a title, description and
//some basic content to add to primary text.
String title = "MyDocument";
String description = "This is a test document";
//Note: primary text must be in xhtml compliant format
String primaryText = "<div xmlns=\"http://www.w3.org/1999/xhtml\"

id=\"_Nf2cQJKNEd25PMUBGiN3Dw\"><h1 id=\"_DwpWsMueEd28xKN9fhQheA\">Test
Document</h1></div>";

__b. Next, we will use the RequirementRequest class to help us put all of this together in a
XML document. It handles a subset of properties that are required by the OSLC
specification and helps to generate the content for the creationFactory POST request.

__4. The new Requirement Content is returned from the createRequirementContentFromShape
method, and we are now ready to build the Post. The POST request is sent to the
CreationFactory URL we saved earlier. The content is added using a post.setEntity(..) method
call.

//Post to the Requirement Factory
HttpPost post = new HttpPost(factoryURI);
post.addHeader("Accept", "application/xml");
post.addHeader("Content-Type", "application/xml");
post.addHeader("OSLC-Core-Version", "2.0");
post.setEntity(new StringEntity(content, HTTP.UTF_8));
HttpResponse sendPostForSecureDocument = HttpUtils.sendPostForSecureDocument(server, post, login,

password, httpclient);
Header requirementLocation = sendPostForSecureDocument.getFirstHeader("Location");
sendPostForSecureDocument.getEntity().consumeContent();

__5. The last part of Step(4) prints out the response of the HTTP PUT. So, let's run the example and
check out the results.

__a. Select the Example04.java file in the Package Explorer.

__b. If necessary , first change the values of the following variables to match your setup:
NOTE: Set the version to 4.0 if you want to exercise the new folder API that has been
added to this sample.

 String server = https://jazz.server.com:9443/rm;

Lab 6 Page 129

https://jazz.server.com:9443/ccm

IBM Software

String jts_server = https://jazz.server.com:9443/jts;
String login = "ADMIN";
String password = "ADMIN";
String projectAreaName = "JKE Banking (Requirements)";

 String version = "4.0"; // specify the version of the RM server, if no
version specified, the default is 3.0

__c. Make sure you save the file (Ctrl-S).

__d. Run the example as a Java application.

__e. The Console view should provide the following similar output:

>> Created Requirement
[https://jazz.server.com:9443/rm/resources/_j5Viau3PEeCJqrnKYnBQVA]

__6. Note the URL of the created Requirement from the bottom of the Console view.

Page 130

IBM Software

__7. Open the Firefox internet browser by double-clicking the Mozilla Firefox shortcut on the
Windows Desktop.

__8. Open the RM application: https://jazz.server.com:9443/rm.

__9. If you were not already logged in, the web UI will display the login dialog.
Login with your current admin login.

Lab 6 Page 131

https://jazz.server.com:9443/rm

IBM Software

__10. From the Requirements dashboard, click on the RM project used for Example04 to open the
Artifact dashboard.

__11. On the Artifact dashboard, in the root folder of the project, you should find the newly created
requirement.

If the version has been set to “4.0” and the sample is run against a 4.0 server, then the newly
created requirement will be created in a folder called 'TestBaseOSLCWS\TargetFolder'.

Page 132

IBM Software

Folder support
Let's explore the changes that were added to Example04 to support folder creation and creating a
requirement in a folder.

In order to create a folder programmatically via the OSLC RM API, it is necessary to

• construct the folderCreationFactory URI

• assemble the folder xml which includes the folderName and the parentFolder

• POST the xml to the folderCreationFactory URI

__1. Scroll to the createFolder method of Example04. Notice how we construct the
folderCreationFactory URI: https://<server:port>/rm/folders + ?projectURL= +
https://<server:port>/jts + /process/project-areas/ + <project-id>

The projectID is retrieved from the serviceProvider URI.

// Create the URL Creation factory
String targetProject = "?projectURL=" + this.JTS_Server + "/process/project-areas/" + projectID;
String folderCreationFactory = this.server + "/folders" + targetProject;

__2. If the parentFolder is to be the root of the project, the parentFolder URI is constructed as follows,
where this.server is equal to https://<server>:<port>/rm

 if (parentfolder == null) {
//lets create it on the root
parentfolder = this.server + "/folders/" + projectID;

}

__3. Now, we need to construct the folder XML body which will include the folderName and the
parentFolder.

// Create the body content
StringBuffer folderBody = new StringBuffer();
folderBody.append("<rdf:RDF\n")
.append("xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns%23\"\n")
.append("xmlns:dcterms=\"http://purl.org/dc/terms/\"\n")
.append("xmlns:oslc=\"http://open-services.net/ns/core%23\"\n")
.append("xmlns:nav=\"http://jazz.net/ns/rm/navigation%23\">\n")
.append("<nav:folder rdf:about=\"\">\n")
.append("<dcterms:title>" + folderName + "</dcterms:title>\n")
.append("<nav:parent rdf:resource=\"" + parentfolder + "\"/>")
.append("</nav:folder>\n")
.append("</rdf:RDF>");

__4. Next, we do a POST to the foldercreationfactoryURI and retrieve the folder location from the
Location header.

final String content = folderBody.toString();

Lab 6 Page 133

IBM Software

//Post to the Requirement Factory
HttpPost post = new HttpPost(folderCreationFactory);
post.addHeader("Accept", "application/xml");
post.addHeader("Content-Type", "application/xml");
post.addHeader("OSLC-Core-Version", "2.0");
post.setEntity(new StringEntity(content, HTTP.UTF_8));
HttpResponse sendPostForSecureDocument = HttpUtils.sendPostForSecureDocument(server, post, login,
password, httpclient);

Header folderLocation = sendPostForSecureDocument.getFirstHeader("Location");
sendPostForSecureDocument.getEntity().consumeContent();
return folderLocation.getValue();

Page 134

IBM Software

5.7 Query

In this example, we will describe how to use the Query Capability OSLC-RM REST service to query for a
requirement resource. Remember that we introduced these REST services in Lab 5.

__1. In the Package Explorer view, open the Example05.java file and scroll to the run method. To
simplify the reading of the code, we have split the code into a set of methods describing the
steps to fetch the query capability element in the Service Provider services document, and query
for a requirement.

// Step (1) : Retrieve the Service Providers catalog
String catalogURI = getServiceProviderCatalog();
System.out.println(">> Service Providers Catalog: "+catalogURI);

// Step (2) : Retrieve the designated Service Provider (Project Area)
String serviceProviderURI = getServiceProvider(catalogURI, projectAreaName);
System.out.println(">> RM Project ["+projectAreaName+"]: "+projectAreaURI);

// Step (3) : Find the query capability element
String query = getQueryCapability(serviceProviderURI);

__2. We will not spend time on the 2 first steps which have been explained during the previous labs.
Step (3) is interesting because the code finds the Query Capability URI. Let's examine the
getQueryCapability(...) method.

__a. First, we have to locate the queryCapability URL for the specific service provider or RM
project we are interested in. This would be the target of the query operation, meaning,
we would be searching in this project.

// Define the XPath evaluation environment
XPath xpath = getXpathNamespace();

//Resource Type
String resourceType = "http://open-services.net/ns/rm#Requirement";

String requirementQueryUrl ="//oslc:QueryCapability/oslc:resourceType[@rdf:resource=\"" + resourceType
+"\"]/../oslc:queryBase/@rdf:resource";
Node evaluate = (Node)xpath.evaluate(requirementQueryUrl, source, XPathConstants.NODE);
String query = evaluate.getTextContent();
System.out.println("Query URI->> " + query);
response.getEntity().consumeContent();

return query;

Lab 6 Page 135

IBM Software

__3. Now that we have the QueryCapability URI, we can now proceed to invoke the query in the
performQuery(...) method.

__a. In our example, we want to search for all resources that contain the text 'Vision' and in
the results we only want to see the title of the resource. In constructing the portion of the
POST request that includes the search string, we must use oslc.prefix,
oslc.searchTerms, and oslc.select.

The oslc.prefix will define the namespace for the attributes: dcterms and types. We
must include this oslc.prefix because we want to use dcterms:title and
types:PrimaryText in the Query request. Remember, from Lab 5, we learned that
oslc.searchTerms where we provide the text we are searching for and oslc.select is
where we indicate that we only want to display title in the query results.

The code below puts together the string to append to the queryCapabilityURI.

// Free text query for "Vision"
String oslcSearchForVisionQuery = queryCapabilityURI +

"&oslc.prefix=" + URLEncoder.encode("dcterms=<http://purl.org/dc/terms/>", "UTF8") + "," +
URLEncoder.encode("types=<http://www.ibm.com/xmlns/rdm/types/>", "UTF8") + "," +

 "&oslc.select=" + URLEncoder.encode("dcterms:title", "UTF8") + "," +
 URLEncoder.encode("types:PrimaryText", "UTF8") +
 "&oslc.searchTerms=" + URLEncoder.encode("\"Vision\"", "UTF8");

String[] lhsrhs = oslcSearchForVisionQuery.split("\\?");
String url = lhsrhs[0];
String body = lhsrhs[1];

In the code above, we are adding the following to the QueryCapabilityURI

&oslc.prefix=dcterms=<http://purl.org/dc/terms/>,types=<http://ww
w.ibm.com/xmlns/rdm/types/>&oslc.select=dcterms:title,types=Prima
ryText&oslc.searchTerms=”Vision”

Note that we are also using URLEncoder to properly encode these parameters.

__b. After constructing the query URI, we will perform a POST to the QueryCapability service
using the QueryCapability URI. In this POST, we will include the
oslcSearchForVisionQuery string.

HttpPost post = new HttpPost(url);
post.addHeader("Accept", "application/rdf+xml");
post.addHeader("OSLC-Core-Version", "2.0");
post.addHeader("Content-type", "application/x-www-form-urlencoded");

HttpEntity entity = new ByteArrayEntity(body.getBytes("UTF8"));
post.setEntity(entity);
HttpResponse postResponse = HttpUtils.sendPostForSecureDocument(server, post, login, password, httpclient,
200);
if (postResponse.getStatusLine().getStatusCode() == 200) {

InputStream responseStream = postResponse.getEntity().getContent();

Page 136

http://purl.org/dc/terms/

IBM Software

byte[] responseBytes = toBytes(responseStream);
String responseString = new String(responseBytes, "UTF8");
System.out.println(responseString);
else{
System.out.println(postResponse.getStatusLine());

}

__c. The POST response will include a listing of all the requirements that match the fulltext
string search (“donor”) and the query results will display the title and primaryText of the
requirements.

__4. Let's run the example and check out the results.

__a. Select the Example05.java file in the Package Explorer.

__b. If necessary first change the values of the following variables to match your setup:

 String server = https://jazz.server.com:9443/rm;
String jts_server = https://jazz.server.com:9443/jts;
String login = "ADMIN";
String password = "ADMIN";
String projectAreaName = "JKE Banking (Requirements)";

__c. Make sure you save the file (Ctrl-S).

__d. Run the example as a Java application.

__e. The Console view should provide the following similar output:

>> POST(1) https://magellan3.bocaraton.ibm.com:9443/rm/views
>> Response Headers:

- Server: Apache-Coyote/1.1
- X-Last-Modified-XSD: 2011-10-03T14:59:48.546Z
- Content-Type: application/atom+xml;charset=UTF-8
- Content-Length: 2919
- Date: Wed, 05 Oct 2011 01:29:57 GMT

<rdf:RDF xmlns:oslc="http://open-services.net/ns/core#"
 xmlns:oslc_rm="http://open-services.net/ns/rm#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:rmTypes="http://www.ibm.com/xmlns/rdm/types/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
>
 <oslc:ResponseInfo rdf:about="https://magellan3.bocaraton.ibm.com:9443/rm/views">
 <dcterms:title>Query Results: 3</dcterms:title>
 </oslc:ResponseInfo>
 <rdf:Description rdf:about="http://example.com/query">
 <rdfs:member>
 <oslc_rm:Requirement
rdf:about="https://magellan3.bocaraton.ibm.com:9443/rm/resources/_JH2oCrE2EeC--cDfe44EPg">
 <dcterms:title>Business Recovery Matters Vision</dcterms:title>

Lab 6 Page 137

https://jazz.server.com:9443/ccm

IBM Software

 <rmTypes:PrimaryText>Business Recovery Matters Capabilities

Stakeholder Needs

Dividends for a Cause Capabilities

Donors can specify contribution criteria

Donors can specify when to start and stop contributing</rmTypes:PrimaryText>
 </oslc_rm:Requirement>
 </rdfs:member>
 <rdfs:member>
 <oslc_rm:Requirement
rdf:about="https://magellan3.bocaraton.ibm.com:9443/rm/resources/_I_D4k7E2EeC--cDfe44EPg">
 <dcterms:title>Vision Template</dcterms:title>
 <rmTypes:PrimaryText>Vision: &lt;&lt;Project Name&gt;&gt;

1. Introduction

&lt;&lt; Provide a brief introduction of the project&gt;&gt;

2. Positioning

2.1 Problem Statement

&lt;&lt;Provide a statement summarizing the problem being solved by this project. The following
format may be used&gt;&gt;
The problem of &lt;&lt;describe the problem&gt;&gt;

Affects &lt;&lt;the stakeholders affected by the problem&gt;&gt;

The impact of which is &lt;&lt;what is the impact of the problem&gt;&gt;

A successful solution would be &lt;&lt;list some key benefits of a successful
solution&gt;&gt;

2.2 Product Position Statement

Provide an overall statement summarizing, at the highest level, the unique position the product intends to fill in
the marketplace. A product position statement communicates the intent of the application and the importance of
the project to all concerned personnel. The following format may be used:
For &lt;&lt;target customer&gt;&gt;

Who &lt;&lt;statement of the need or opportunity&gt;&gt;

The &lt;&lt;product name&gt;&</rmTypes:PrimaryText>
 </oslc_rm:Requirement>
 </rdfs:member>
 <rdfs:member>
 <oslc_rm:Requirement

Page 138

IBM Software

rdf:about="https://magellan3.bocaraton.ibm.com:9443/rm/resources/_JM7VVLE2EeC--cDfe44EPg">
 <dcterms:title>JKE Requirements Process Overview</dcterms:title>
 </oslc_rm:Requirement>
 </rdfs:member>
 </rdf:Description>
</rdf:RDF>

5.8 Create OSLC Servlet for RM

At this point of the workshop, let's create a MyRMPortal application to take advantage of the OSLC-RM
Consumer API.

In this example, we will reuse code from the simple Web portal application created in Lab 3 so that it lists
all the project areas / RM Projects of a designated OSLC-RM server.

__15. Launch the Eclipse client

Lab 6 Page 139

IBM Software

__16. Create an Eclipse Dynamic Web project.

__a. From the File menu, select New > Other...

__b. From the New dialog wizard select the Dynamic Web Project item and press Next.

__c. For the project name, type MyRMPortal and press Finish.

A dialog will pop up telling you that for this kind of project, the Java EE perspective is
associated. The dialog asks if you want to switch to this perspective. Answer Yes.

At this point, you should have a new eclipse project named MyRMPortal listed in the
Project Explorer view of the Java EE perspective.

Page 140

IBM Software

Lab 6 Page 141

IBM Software

__17. Create an HTML page to connect to an OSLC RM server and display its Project Areas. For that
we will need to know the Public URI of the server, and the login / password for authentication.

__a. Click on the WebContent folder of your new Eclipse project.

__b. From the context menu, select New > HTML Page to create an HTML page

__c. In the file name field, type index.html and press Finish

This wizard creates and HTML page using a default template and open the HTML editor
on it.

__d. Between the <title> tags replace Insert title here by My RM Project portal

__e. Between the <body> tags insert the following HTML snipped code:

<h2>Connect to:</h2>
<form action="ListOfRMProjects" method="get">

<table>
<tr><td>Public URI:</td> <td><input type="text" name="publicURI" size="40"/></td></tr>
<tr><td>Login:</td> <td><input type="text" name="login" size="20"/></td></tr>
<tr><td>Password:</td> <td><input type="password" name="password" size="20"/></td></tr>
<tr></tr>
<tr><td><input type="submit" value="Submit"/></td></tr>

</table>
</form>

Page 142

IBM Software

Please notice the ListOfRMProjects value of the action attribute of the form. It
designates the name of the servlet we will implement in the next step.

Please notice also the method we will use to connect to the server (get), it designates
the method called in the servlet.

__18. Add the libraries that your servlet will require.

__a. Because we will use in this new servlet the same Apache HTTP client APIs that we used
in our previous examples, expand the org.apache.http project and select the listed jars:

__b. From the context menu, select Copy.

__c. In the Web project (MyRMPortal), select the WebContent/WEB-INF/lib folder.

__d. From the context menu, select Paste. At this point you should retrieve all the jars you
have copied into the lib folder:

Lab 6 Page 143

IBM Software

__19. It is time to create the servlet which will connect to the OSLC RM server, retrieve the list of RM
Projects and return an HTML page showing this list.

__a. From the context menu of the MyRMPortal Web project, select New > Servlet.

__b. For the Java package of the servlet, type: net.jazz.oslc.consumer.rm.servlets

__c. For the Class name of the servlet, type: ListOfRMProjects. As mentioned earlier, this
name should be the same as the one that you specify as the value of the action attribute
in the form.

__d. Press Finish. This wizard creates a new class, subclass of
javax.servlet.http.HttpServlet and binds the URL /ListOfRMProjects to the
designated class: net.jazz.oslc.consumer.cm.servlets.ListOfRMProjects.

FYI, this binding is described in the file WebContent/WEB-INF/web.xml.

__20. Write the code of your servlet

A Java editor is now open against this new servlet class. This class implements 2 default
methods: doGet, to support the HTTP GET method and doPost to support the HTTP POST
method. As we mentioned earlier, our form will submit its parameters using the HTTP GET
method, which means that the doGet method will be called.

__21. The servlet we want to implement is very similar to the servlet in the MyPortal web application
from Lab 3. So, we will use this opportunity to copy/paste the code of the
ListOfProjectAreas.java doGet() methos into our servlet and adapt it to our needs.

__a. Edit the List example located in MyPortal-
>net.jazz.oslc.consumer.cm.servlets/ListOfProjectAreas.java

__b. Copy all the code contained in the doGet() method and paste it in the doGet method of
this servlet.

__c. In the pasted code, instead of using the cmServiceProviders, use the
rmServiceProviders.

String catalogXPath = "/rdf:Description/oslc_rm:rmServiceProviders/@rdf:resource";

__d. Now, instead of using these NamespaceContextMap String array values, replace with
the following:

new NamespaceContextMap(new String[]
{ "rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

"oslc_rm","http://open-services.net/xmlns/rm/1.0/"}));

__e. Scroll down to the HTML response section and edit it to look as follows:

Page 144

IBM Software

// Build the HTML response
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>RM Project List</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>RM Projects in: "+server+"</h1>");
 out.println("");

// Print out the title of each Service Provider
int length = titleNodes.getLength();
Node node;
Element element;
String name;
String url;
for (int i = 0; i < length; i++) {

node = titleNodes.item(i);
name = node.getTextContent();
element = (Element)(node.getParentNode());
url = element.getAttribute("rdf:about");
out.println(""+name+"");

}

 out.println("");
 out.println("</body>");
 out.println("</html>");

 out.close();

__f. Save the file.

__22. At the point you should still have few errors. To fix them, you need to copy the package
containing the classes HttpUtils and NamespaceContextMap into your Web project.

Lab 6 Page 145

IBM Software

__a. Switch to the Java perspective.

__b. In the MyPortal Eclipse project, select the package net.jazz.oslc.utils package under
the src source folder.

__c. Access the context menu and select Copy.

__d. In the MyRMPortal Web project, select the net.jazz.oslc.consumer.rm.servlets
package folder.

Page 146

IBM Software

__e. In the context menu select Paste.
This action should fix all the errors that you had in your servlet.

__f. Switch back to the Java EE perspective.

__23. It is time to test the servlet.

__a. Your Jazz Team Server should be running. If it is not the case, start it.

__b. Select the MyRMPortal web project.

__c. From the context menu select Run As > Run on Server

__d. The workbench will ask to select the Application Server to run against.
Select your Tomcat server and press Finish.

The server should start and the index.html page should appear into the Eclipse
embedded web browser.

Fill the fields with data then press Submit.

__e. After few seconds, a new page will appear with the list of the Project Areas contained in
the referenced repository.

Lab 6 Page 147

IBM Software

__f. At this point, using this servlet-based pattern you can build any type of web application
consuming OSLC RM APIs.

__24. Shut down the Jazz Team Server by running:
(<JazzTeamServer_Root_Folder>\server\server.shutdown.bat).

Conclusion
This last example concludes our two labs on how to consume the
OSLC-RM API. We hope this will help you feel more comfortable
with the basics of OSLC, and encourage you to look at some of the
advanced features.

Don’t hesitate to join the http://open-services.net community and
follow the different specification activities…

Page 148

http://open-services.net/

IBM Software

Appendix A Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Appendix Page 149

IBM Software

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Page 150

IBM Software

Appendix B Trademarks and copyrights

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. See Java Guidelines

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Other company, product and service names may be trademarks or service marks of others.

Appendix Page 151

NOTES

NOTES

© Copyright IBM Corporation 2013

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks or registered

trademarks of International Business Machines Corporation in the

United States, other countries, or both. If these and other IBM

trademarked terms are marked on their first occurrence in this

information with a trademark symbol (® or ™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at

the time this information was published. Such trademarks may also

be registered or common law trademarks in other countries. A current

list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml

Other company, product and service names may be trademarks or

service marks of others.

	Lab 1 Setting up for OSLC Development
	1.1 Download and Install the Required Files from jazz.net
	1.2 Setup a Tomcat Test Server
	1.3 Install the REST Client Add-on for Mozilla® Firefox®
	1.4 Test the REST Client Setup
	1.5 Test the WTP and Tomcat Setup
	1.6 Create a default project (or reuse an existing one!)
	1.7 Loading examples

	Lab 2 An introduction to the OSLC APIs
	2.1 The Root Services document
	2.2 The REST Client add-on
	2.3 OSLC-CM services
	2.4 Search for Work Items

	Lab 3 Access OSLC APIs programmatically
	3.1 Accessing the Root Services document
	3.2 Retrieve the Service Provider catalog using Xpath
	3.3 Jazz Form-based Authentication
	3.4 Work Item update
	3.5 Build your first OSLC servlet

	Lab 4 Implementing the OSLC APIs in a service provider
	4.1 Setting up the server runtime environment and running the sample server
	4.2 Interacting with the sample provider
	4.3 Modifying the provider, adding another dialog
	4.4 Test changes

	Lab 5 Introduction to OSLC RM API
	5.1 The Root Services document
	5.2 OSLC-RM services
	5.3 Search for Requirements
	5.4 Requirement Selection Dialog
	5.5 Creation Dialog
	5.6 Appendix

	Lab 6 Access OSLC RM APIs programmatically
	6.1 Accessing the Root Services document
	6.2 Retrieve the Service Provider catalog using XPath
	6.3 Jazz Form-based Authentication
	6.4 Requirement Create/Modify
	Folder support

	__3. Now, we need to construct the folder XML body which will include the folderName and the parentFolder.
	5.7 Query
	5.8 Create OSLC Servlet for RM

	Appendix A Notices
	Appendix B Trademarks and copyrights

