
SCM scenarios for ISPF client

identifying content

M = Minimum content

N = Nice to have

SCM operations – by category

• Creating a repository workspace

• Repository workspace edition

• Actions over a repository workspace

• Team operations

• Workflow of changes in the SCM

• Working on changes

• Working with outgoing change sets

• Incoming change sets

• Locate change sets

Creating a repository workspace

Summary

• A repository workspace can be created from different places:

– From scratch N

– From a stream M

– From a snapshot (that can be linked to a build result) N

– From another repository workspace N

• Depending on its creation method, its initial contents vary

• It is possible to edit this contents afterwards N

Create an empty one from scratch N

• It is empty
– no component

– no target flow

Create from a Stream (1/3) M

• Contains:
– baselines of selected components

– target flow to the Stream it was created from

Create from a Stream (2/3) M

Select components –

list comes from stream contents

Create from a Stream (3/3) N

Flow targets are setup:

- to Stream it was created from

- to flow targets of that stream (if any)

From a snapshot – step 1: find the snapshot N

From a snapshot - step 2: create new

workspace N

All components are selected

No flow target by default

From a snapshot – linked to build result N

Note: most of the

workspaces I create

on jazz.net are from

snapshots found

in build results

From another repository workspace N

Repository workspace edition

Summary

• Repository workspace definition involves:

– A few attributes

• Prefixes and security M

• Rest N

– The management of components N

• Creation of component

• Selection of a component baseline

• Ownership of component

– The selection of the target flows: N

• Selecting target Stream/workspaces

• Selecting the components that flow

Repository Workspace (1/3)
General characteristics M/N

name

Repository Workspace (2/3)
Components N

Select an existing component baseline.

Complex, see later

Equivalent to Add...

Add component (1/3)
N

The goal is to

select a baseline

of a component.

There are several

paths to find it.

Add component (2/3)
N

Add component (3/3)
N

Repository workspace (3/3)
Flow targets N

Actions over a repository workspace

(non file system related)

Summary

• Repository workspace actions involves:

– List of my workspaces M

– Delete, obtain URI, etc. M

– Search an available repository workspace

– Create a snapshot from a repository workspace N

– Create a stream from a repository workspace

– Comparison between repository workspace and stream or
snapshot N

Search

• My repository workspaces

– a result list from predefined criteria

• Any visible workspaces:

Delete M

Copy URL N

New snapshot N

But it needs to be promoted…

Snapshot actions N

New Stream

Leads to Stream Editor

Comparison N

Open change explorer view

Actions over a repository workspace

(file system related)

Summary

• Load and unload actions act at workspace & component
level M – to be replaced by our own mechanism

• Load lets you select whole folders or only sub-folders to
be loaded N

• load can target a specific location on the file system M

Load M – to be replaced by our own

mechanism

Unload M – to be replaced by our own

mechanism

• At workspace level:

• At component level

Team operations

Share project
N/M – equivalent function

Other project level operations N

• Each of those actions create a change or changeset

File level team operation: View history M

Locks

File level Team operation: lock N
Look at automatic pessimistic locking/unlocking M

Search: locks

Transfer locks N for developer – M for Admin

Unlock N for user / M for Admin

Workflow of changes in the SCM

RTC Jazz Server

Repository Workspace Stream

Prj1

Pending changes

Repo Workspace <-> Stream
Prj1 Prj1

Next: The file will be changed

RTC Jazz Server

Repository Workspace Stream

Prj1

Pending changes

Repo Workspace <-> Stream

Unresolved changes

Prj1 Prj1

Next: A changeset will be created, change checked-in in the changeset

RTC Jazz Server

Repository Workspace Stream

Prj1

Pending changes

Repo Workspace <-> Stream

Outgoing changes

∆ ChangeSet XYZ

Prj1 Prj1

Next: changeset is delivered
Deliver Changeset M

Automatic Changeset Delivery N

RTC Jazz Server

Repository Workspace Stream

Prj1

Pending changes

Repo Workspace <-> Stream
Prj1 Prj1

Working on changes

Actions on unresolved changes

• Create patch

• Undo

– Will undo local changes

Actions on unresolved changes

Actions on unresolved changes

• Create a new change set and check-in

• Check-in in existing change set

Working with outgoing change sets

Actions on outgoing changesets

• Link to work-items – N (but M Associate changeset
to Work Item on check-in).

Complete M

• Complete closes the changeset.
No additional change can be checked-in

Children of a change set

• List the changes in the change set M

Discard M

• Delete the change set

• Undo the changes locally

Reverse N

Suspend N

• Move the changeset to “suspended” – can’t add changes into it

• Undo the changes locally

Resume N

• Move the suspended changeset to outgoing

• Re-do local changes

Submit for review N

• If no WI associated, associates one first

Deliver M

• Need to unlock first

Pre-conditions M

• There are client & server pre-conditions

Depending on the process, you can overrule or not

Incoming change sets

Accept incoming change set M (assuming pessimistic
locking)

• Changeset goes in your repository workspace

• Implicitly load it locally

Accept a change set from a WI M (because alternative
is Changeset search)

Accept a change set from a build N

From a found changeset N

Change explorer N

Locate change sets

Locate change set N

Things to consider

• History of an object M
– Changeset

– Work items

– Version history

– Compare

• Developer with Eclipse & ISPF workspaces N
– Deliver

– Synchronise

• Use cases
– Emergency Fix M

– Maintenance M

– New development N

• BUILD M
– Personal M

– Build override - only specific objects, smart or full M

• Dependency information, e.g impact analysis M
– Where used?....

