
Rational Unified Process for Systems
Engineering

Part III: Requirements analysis and design

by Murray Cantor

Principal Engineer
Rational Brand Services
IBM Software Group

In the August issue of The Rational
Edge, we began a three-part series to
provide an overview of the latest
evolution of Rational Unified Process
for Systems Engineering,® or RUP
SE.® RUP SE is an application of the
Rational Unified Process,® or RUP,®
software engineering process
framework. RUP users should note that
the currently available RUP Plug-In for
SE is the RUP SE v1 Plug-In, which
was made available in 2002.

Part I included a discussion of systems, the challenges facing the modern
systems developer and how RUP SE addresses them, RUP SE Unified
Modeling Language (UML)-based modeling and requirement specification
techniques, and the use of UML semantics. Part II focused on system
architecture and introduced the RUP SE architecture framework, which
describes the internals of the system from multiple viewpoints. Now, in
Part III, we will cover requirements analysis and flowdown, and
specifications for elements of the RUP SE framework. This will include a
description of the Joint Realization Method, a novel technique for jointly
deriving the specification of architectural elements across multiple
viewpoints. We will also include a brief discussion of system development
with RUP SE.

Editor's note: The RUP SE v1 Plug-In was made generally available in
2002, and v2 of this plug-in was made available in June of 2003. Although
the information in this series is consistent with v2, the articles do discuss a

Copyright Rational Software 2003 http://www.therationaledge.com/content/oct_03/m_rupse_mc.jsp

The Rational Edge -- October 2003 -- Requirements Analysis and Design

few possible extensions to the process framework. Please note that the
RUP SE Plug-In -- v1 and v2 -- is downloadable from IBM Rational
Developer Network (http://www.rational.net; authorization required).

RUP SE and requirements

Following common system practice, RUP SE addresses two types of
requirements:

1. Behavioral requirements -- What the system does to fulfill its
role in the enterprise. In RUP SE, a system's behavior is captured
by its use cases and their analyses into services. Use cases and
services may have associated performance requirements.

2. Supplementary requirements -- Nonfunctional requirements,
including design goals (e.g., reliability or cost of ownership), and
system attributes (e.g., data capacity or total weight).

RUP SE also offers a process pattern for deriving requirements for
architectural elements:

1. Determine the blackbox requirements or specifications for a given
model element.

2. Decompose that model into whitebox elements, assigning roles and
responsibilities to these elements.

3. Study how the elements collaborate to jointly meet the blackbox
requirements. This usually involves some form of collaboration
diagram.

4. Synthesize the analysis of the collaboration to determine the
blackbox requirements for the elements.

This process pattern is well known,1 and it is particularly interesting that
Friedenthal et al. adopted it in their Object Oriented System Engineering
Method (OOSEM).2

System specification, therefore, means defining use cases, system
services, and supplementary requirements that, if met, would result in a
system that meets its business purpose or mission. RUP SE distinguishes
between allocated and derived requirements. A requirement is allocated if
a blackbox requirement is assigned to a whitebox element. A whitebox
requirement is derived if it is determined by studying how the whitebox
element collaborates with others to meet a blackbox requirement. Both
the behavioral and supplementary requirements may be derived. Note that
derived requirements take into account the role of the architectural
element in the system design.

Consider the following example. Most automobiles have differentials, the
devices connecting the drive shaft to the axles that allow the driving
wheels to go at different speeds whenever the automobile turns a curve.
This function is necessary because the inner wheel must go more slowly

The Rational Edge -- October 2003 -- Requirements Analysis and Design

than the outer wheel in order for both wheels to maintain traction. If one
of the wheels loses traction, the automobile may spin out and possibly flip
over. Nevertheless, there is no automobile system requirement for a
differential. The automobile system requirement is simply that the
automobile maintain traction when it traverses a curve, which can be
accomplished in a variety of ways that don't involve a differential. For
instance, either of these alternatives might work:

● A single driving wheel (as in the three-wheeled vehicles that
sometimes appear in science-fiction movies).

● Two motors, one per driving wheel, with some sort of drive-by-wire
solution.

The convention of the differential prevails either because it is superior
from an engineering standpoint (i.e., it does a better job of meeting a
variety of requirements in addition to traction control, such as maintaining
overall stability, optimizing interior volume, and managing cost of
materials maintenance) or from a design constraint that the engineer must
take advantage of previous excellent engineering.

Now, since the differential is not a required element of the automobile,
there is no mechanism for assigning system requirements to the
differential. Rather, the differential plays a role in collaboration with other
elements of the automobile (steering, brakes, etc.) so that they jointly can
meet the required behavior of the automobile to safely traverse a curve.
The behavior of the differential, such as "adjust wheel velocity," is derived
from the system requirement and the role the differential plays.This
behavior is derived, not allocated.

Further, the differential must meet derived supplementary requirements in
order to support the system's defined supplementary requirements. For
instance, the differential will have a weight and volume budget as well as
a reliability measure.

The use of derived requirements for subsystems collaborating to carry out
use cases is called logical decomposition. Similarly, determining
subsystem requirements by allocation is called functional decomposition.
Generally, logical decomposition is essential for quality systems.3

It follows that the system requirements are derived from an understanding
of the enterprise services and the role that the system plays in the
enterprise. In the analysis model, the system architectural elements are
subsystems, localities, and processes, as described in the System
architecture section in Part II of this series. It is in the requirements
analysis discipline that requirements for each of these types of
architectural elements are determined. For example, with the business
model in place, RUP SE suggests that you partition the enterprise into the
system and its actors to derive system requirements. Then, to determine
system requirements, an analyst may study how the system and its actors
collaborate to meet the business requirements.

The following sections describe RUP SE's approach to deriving functional

The Rational Edge -- October 2003 -- Requirements Analysis and Design

requirements for systems and elements of the analysis model.

Deriving functional requirements through use-case
flowdown

Use-case flowdown is an activity for deriving functional requirements for
systems and their elements. Flowdown can be applied to add detail within
a model level or to specify elements at a lower model level. For example,
flowdown can be used to determine system services at the context level.
Similarly, it can be used at the analysis level to identify subsystem
services and to break subsystems into further subsystems.

It is important to note that flowdown may be applied recursively -- in
other words, whitebox elements become blackbox for the next application.
This allows the team to reason about large systems at the appropriate
level of specificity. Repeated application of the flowdown activity allows
teams to add detail while managing a consistent level of abstraction. It
also permits concurrent design; that is, each whitebox entity can be
specified sufficiently to be treated as a blackbox entity for further design
by separate teams. You can use this approach not only to derive
requirements for elements of the analysis model, but also, with little
modification, to determine system requirements from business
requirements.

Performing flowdown in the hierarchical manner we described above
results in an interesting relationship between services and use cases:
blackbox services become whitebox use cases. Use cases describe how an
entity and elements in its context collaborate to fulfill some purpose. Here,
the purpose of the use-case flowdown is to support delivery of a system
service. The realization of the service consists of use-case scenarios. For
each UML subsystem, you can build a context diagram showing system
actors with which the subsystem collaborates, as well as the peer
subsystems with which it shares a dependency relationship (these are akin
to the enterprise and internal actors discussed under System
Specification in Part I). From the subsystem point of view, the service
realization is exactly how it collaborates with its actors to carry out its
role. This is exactly a use-case scenario. Note that flowdown does change
the common value heuristic of use-case analysis. The use cases in
flowdown provide value to the blackbox entity, and not necessarily to any
of the participating actors.

Simple realization

Use-case flowdown is an extension of use-case realization, an elemental
practice of object analysis. Use-case realization consists of finding classes
that participate in carrying out a use-case scenario, and discovering how
the objects of the various classes collaborate. The realization includes
specifying the order of objects' messages that are passed during the
collaboration, and it is captured in a sequence or collaboration diagram. In
fact, by building sequence diagrams, you can often discover the messages
a class operation must provide so that its objects can participate in
realizing its use cases.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

In RUP SE, this notion of realization is extended in several ways. First,
realization is applied to model levels higher than design. For example, the
outcomes of flowdown applied between enterprise and system result in
identification of system services. If applied between the system and its
model elements, flowdown results in:

● A use-case survey for subsystems.

● Identification of subsystem services and interfaces.

● A survey of hosted subsystem services and/or supported interfaces
for localities.

The idea of extending use-case realization to UML subsystems is not new.
For example, realizations for UML subsystems are often referred to as
Architectural Interaction Diagrams.

Here are the flowdown steps for building the system context diagram and
identifying system services:

1. Model an enterprise whitebox as a set of collaborating systems.

2. Model how systems collaborate to realize enterprise services,
mission, and so forth.

3. Create a context diagram for the system.

4. Determine actors (i.e., entities that collaborate with the system).

5. Identify I/O entities.

6. Aggregate similar collaborations between the system and its actors
into use cases.

7. Add use-case detail: performance, pre- and post-conditions, and so
forth.

8. Identify system services -- what the system does to support its use
cases; aggregate similar whitebox steps.

9. Add system attributes from your analysis of enterprise needs.

When a realization consists of one type of whitebox element, such as
classes or UML subsystems, we call this simple realization. An example is
the flowdown from enterprise to system, as delineated below.

Procedure 1: Joint realization

In future versions of RUP SE, the simple realization described above is
extended to joint realization: analyzing how the elements of multiple
viewpoints collaborate in carrying out a service. For example, in joint
realization, the flowdown might consist of simultaneously determining the
collaboration of logical, physical, and informational elements.

Joint realization consists of the following procedure:

The Rational Edge -- October 2003 -- Requirements Analysis and Design

1. Choose the participating viewpoints. The logical viewpoint is
mandatory.

2. For each whitebox step in realizing a blackbox service, you must:

❍ Specify the logical element that executes it.

❍ Model how the additional viewpoints participate. For example,
you might include:

-Physical viewpoint -- Specify hosting locality; if there are
two localities, then decompose into two steps.
-Process viewpoint -- Specify executing process; if there
are two processes, then decompose into two steps.
-Information viewpoint -- Specify which data schema
element supports handling of any information that is used.

Throughout this process, apply the following joint
realization rule: If a given logical element whitebox step
requires more than one element of the other viewpoints,
divide that step into further steps so that each step
requires exactly one whitebox element from each
viewpoint.

3. Create interaction diagrams for each viewpoint:

❍ Architecture interaction diagram

❍ Locality interaction diagrams

❍ Process interaction diagrams

4. Budget supplementary requirements for performance, accuracy, and
so forth, to each step; evaluate/confirm with interaction diagrams.

Procedure 2: Specify resources with joint realization

Joint realization has a variety of applications. For example, it can be used
for flowdown from system to logical and worker view to reason about
automation decisions. Or it can be used for flowdown from system to
logical, physical, and process elements (this application is described in
more detail below). To uncover specifications for the system's physical
resources, you must:

1. Develop initial analysis model-level views (system whitebox). To do
this:

❍ Use object-oriented analysis methods for the logical view.

❍ Apply physical considerations for the locality view.

2. Use joint realization to model each (architecturally significant)
system service specification, including:

❍ Collaborating steps for UML subsystems.

❍ Hosting localities.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

❍ Executing process.

3. Capture the whitebox performance requirements -- in other words,
the budgeting of the blackbox performance requirements to the
whitebox steps. To do this:

❍ Identify UML subsystem use cases; in other words, for each
subsystem, identify system services involving that
subsystem.

❍ For each subsystem, identify its services from applying
aggregation methods on messages in collaboration.

❍ For each locality, create a survey of hosted subsystem
services.

❍ For each process, create a survey of executed subsystem
services.

4. Document traceability between system and subsystem use cases,
and/or system and subsystem services.

Procedure 3: Flowdown from context to analysis model level

The assignment of whitebox steps to subsystems, localities, and processes
involves a set of design decisions. Each decision adds detail to the role
that each analysis element plays in the overall system design. In the
process of making assignments, the team may decide to refactor the
design, shifting responsibilities from one element to another within a given
view. Also, note that flowdown provides opportunity for adding an
appropriate level of detail and refactoring subsystem, locality, and process
roles and responsibilities.

Table 1 shows an example whitebox flowdown for the system service
"Closing sale with credit card," using the subsystem (Figure 6) and locality
model 1 (Figure 8) for a click-and-mortar retail system.

Table 1: Joint realization table

The Rational Edge -- October 2003 -- Requirements Analysis and Design

The next step is to determine the UML subsystem use cases and context.
A UML subsystem context view, like a system context, consists of the
subsystem, its actors, and any relevant I/O entities. For a subsystem, its
actors can consist of its peer subsystems and, possibly, system actors.
Figure 1 provides a subsystem context diagram example.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Figure 1: Subsystem context diagram

Recall that a use case describes how a system and its actors collaborate to
provide a service of value. For a subsystem, the service of value is the
system service itself. It follows that for each subsystem, its use cases are
exactly the system services in which it collaborates. If you are going to
partition the development effort along subsystem boundaries or as a basis
for developing test cases, it is useful to keep a use-case survey for
subsystems.

You can find subsystem services by sorting the service whitebox steps by
subsystem. For each subsystem, sort the whitebox steps and aggregate
similar steps, as shown in Table 2. This results in the specification of
services provided by each subsystem.

Table 2: Example survey of locality hosted services

Locality Name: services
Store Processing

Locality Responsibility:
This locality hosts central store sales transactions and accounting. It
provides the interface to the central office and credit card
processing.

Subsystem
Service

Subsystem System
Service

Service
Whitebox Text

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Initiate Credit
Card Sale

Order Processing Enter a sale Order
Processing
starts a sales
list

Add Product data Order Processing Enter a sale The scanner
data is sent to
order
processing,
which retrieves
name, price,
and taxable
status from an
inventory and
updates list

Compute Total Order Processing Enter a sale Order
Processing sums
the price and
computes the
taxes.

After determining the subsystem services, you can sort the set of
subsystem services by locality or by process. The survey of hosted
services for each locality expresses what computing occurs at the locality
as well as the associated performance requirements. This information
provides input to the specification of physical components that will be
deployed at the locality. Similarly, the survey of executed services for
each process serves as input to the specification of software components.
These activities add the following steps to the joint realization process:

● For each locality, create a survey of hosted services (such as those
shown in Table 2).

● For each process, create a survey of executed services.

We'll describe component specification more fully below.

An alternate approach for associating subsystem services to localities is to
define a subsystem interface comprising services that are hosted on the
locality, and then associate that interface with the locality. This approach
has the benefit of keeping the service-to-locality association fully
contained in the UML model.

The textual description in the whitebox flow of events can also be
expressed as a set of sequence or collaboration diagrams. These diagrams
convey the traffic between analysis elements: Each diagram is a sequence
diagram whose objects are proxy classes for the analysis elements. The
messages are invocations of the subsystem services. Figures 2 and 3 show
the subsystem and locality interaction diagrams for the flow of events
described in Table 2.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Figure 2: Example subsystem interaction diagram
Click to enlarge

Figure 2 provides insight into the coupling and cohesion of the
subsystems. This insight may be used to refactor the subsystem design; if
there is a lot of traffic between a pair of subsystems, for example, it may
make sense to combine them. Figure 3 is an example locality interaction
diagram.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Figure 3: Example locality interaction diagram

The traffic in Figure 3 shows what data must flow between the localities.
This information is used to specify associations between localities.

Supplementary requirements flowdown

Supplementary requirements are initially captured as system class
attributes or tagged values. As part of the analysis process, the system
architects develop an initial locality diagram. The locality view is a
synthesis of the nonfunctional considerations and provides a context for
addressing how nonfunctional requirements such as reliability and capacity
will be addressed.

Standard engineering practice allows for the budgeting of capacity,
permitted failure rates, and so forth. This results in a set of derived
supplementary requirements for each locality element. Locality
characteristics are determined from these requirements.

Component specification

Moving from the analysis to the design level of an architecture entails
determining the hardware and software component design. This design-
level specification consists of the components to be deployed: hardware,
software, and workers.

Hardware components are determined by analyzing the localities, along
with their derived characteristics and hosted subsystem services. With this
information, you can do descriptor-level realizations of the localities.
Descriptor node diagrams specify the components, servers, workstations,

The Rational Edge -- October 2003 -- Requirements Analysis and Design

workers, and so forth, without showing specific technology choices. Figure
4 is an example descriptor node diagram that realizes the locality diagram
shown in Figure 8. The fulfillment locality is realized as four components: a
warehouse gateway, a mailing/postage system, and two workers.

The descriptor nodes inherit characteristics from their localities through an
allocation or budgeting process.

Figure 4: Example descriptor node diagram

The implementation hardware components -- in other words, the actual
deployed set of hardware -- are determined by making
cost/performance/capacity trades from the descriptor view. In fact, a
system may have more than one hardware configuration, each meeting
different price/performance points.

Components are determined by specifying a set of object classes, and
then compiling and assembling the code associated with those classes into
executable files. A fully considered software component design must
reflect a variety of concerns:

● Locality -- where the components need to run.

● Hosting -- processor instruction set and memory restrictions for
the executing code.

● Concurrency -- separation of processing into different hosts or
memory spaces to address reliability and related concerns.

It follows that the information needed to specify components includes the
surveys of hosted subsystem services for localities and their realized

The Rational Edge -- October 2003 -- Requirements Analysis and Design

hardware components, surveys of executed services for processes, and
the view of participating classes (VOPC) for the subsystem services.

For each hardware configuration, the RUP SE method requires creation of
a component from the classes participating in all the subsystem services
hosted on each node. If those services need to be executed in more than
one process, we divide the components further by assigning the
participating classes of the subsystem services executed by each of the
processes. Note that some subsystem services may be executed by more
than one process, and therefore their classes may be in more than one
component. We complete the process by dividing the components further
to account for memory constraints (such as .exe and .dll trade-offs),
shipping media limitations, and so forth.

These activities result in a set of specific hardware and software
components that make up the system.

System development

RUP SE projects are managed much the same as any RUP project.
However, because of the size of, and additional activities required for,
most systems engineering efforts, there are some differences, which we
will discuss briefly in this section.

Project organization

Moving from a traditional serialized process ("waterfall" process) to an
iterative process has profound implications with respect to how a project
must be organized. In a serialized process, staff members are often
assigned to a project until their artifacts are complete. For example, the
engineering staff completes the specifications, hands them off to the
development staff, and moves on to the next project. In any RUP-based
project, no such handoff occurs. Rather, the artifacts evolve iteratively
throughout the development process. This requires that the staff members
responsible for project artifacts such as the requirements database and
UML architecture, must remain assigned to the development project
throughout its lifecycle.

Figure 5 shows the organization for a typical RUP SE project. It consists of
a collection of development teams, each with a project manager and a
technical lead. There are also teams that deal with overall system
architecture and project management.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Figure 5: A RUP SE organization chart

The teams in this figure have the following functions:

● The Enterprise Modeling Team analyzes the business need and
generates business models and/or related artifacts, such as concept
of operations documents.

● The System Architecture Team works with the Enterprise
Modeling Team to create the system context and derive system
requirements. This team develops the subsystem and locality views
as well as their derived requirements. Throughout the development
process, the System Architecture Team serves as a technical
escalation point to resolve architectural and engineering issues. This
team also works with the development teams to specify the
software component architecture. Team members include the
technical leads of the development teams.

● The Project Management Team looks after the standard project
issues such as project reviews, resource planning, budget tracking,
earned value and variances, and coordinated iteration planning.

● For each iteration, the Integration and Test Team receives the
code and hardware components from the development teams,
builds the software components, and installs the hardware and
software components in a laboratory setting. The team also plans,
executes, and reports on the system tests for each iteration.

● The Subsystem Development Teams are responsible for the
design and implementation of the software realization of one or
more subsystems. These teams base their work on the derived use
cases discovered during flowdown activity. Depending on the size
and complexity of the system, the subsystem use cases may be
realized as class design and associated code modules, or the

The Rational Edge -- October 2003 -- Requirements Analysis and Design

subsystems may be further decomposed into subsystems. In the
latter case, a subsystem team may be further decomposed into sub-
subsystem teams, and a subsystem architecture team may be
created. This process enables scalability of the RUP SE approach.

● The Hardware Development and Acquisition Teams are
responsible for the design, specification, and delivery of the
hardware components.

● The Deployment Operations and Maintenance Team handles
operational issues and serves as a liaison with the users. This team
might install and maintain the system in the field. In other cases,
this team might handle user defect reporting and provide patches to
the field.

Concurrent design and implementation

An attractive feature of the RUP SE organization approach is that it scales
to very large programs. Once you decompose the system into subsystems
and localities with their derived requirements, each of these analysis
model elements is suitable for concurrent design and development. As we
noted, you can assign UML subsystems to separate development teams,
and assign localities to hardware development or acquisition teams. Each
team works from its derived survey of hosted services or assigned
interfaces to develop its portion of the design model and implementation
models. That means the design and implementation of the design
elements can proceed in parallel.

For very large systems, a system-of-systems approach can be adopted. In
such cases, each UML subsystem has its own locality mode, and you need
only address logical concerns. This permits application of the organization
structure shown in Figure 5 at the subsystem level, providing even more
scalability.

Iterative development, integration, and testing

One central feature of the RUP approach is that the system is developed in
a series of iterations, each of which produces a working prototype with
incrementally new functionality. The system is integrated and tested at
each iteration, and the iteration testing is a subset of the system tests.
Consequently, the final iteration results in a fully tested system ready for
transition to the operational setting.

The timing and content of iterations are captured in an iteration plan early
in the project. However, like any RUP artifact, the iteration plan is updated
continually to reflect the emerging understanding of the system as it
comes together.

The content of an iteration, captured in a system iteration plan, is
specified by what use cases and supplementary requirements are realized
by the components developed in the iteration. Each iteration is tested by
the subset of applicable system test cases.

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Recall that subsystems have derived services that trace from system
services. This tracing provides a basis for derived iteration plans for the
subsystems and localities. That is, the content of each system iteration is
traceable to the functionality that needs to be provided by the subsystems
and localities to support the iteration. In practice, the development teams
will negotiate the iteration content to reflect their development
practicalities. For example, an early system iteration cannot require full
functionality of a subsystem. Compromises must be made.

A good system iteration plan provides the opportunity to identify and
resolve system technical risks early, in contrast to the typical late-stage
panic of the waterfall-based integration and testing phase. The technical
risks can involve both functional and nonfunctional requirements. For
example, an early integration can shake out system bring-up and fail-over
issues that cannot be fully understood with detailed design and interface
specifications alone. In practice, the early iterations should validate that
the architecture is sufficient to meet these sorts of nonfunctional
requirements.

Iterative system development may seem more expensive because it
requires more testing, as well as scaffolded or simulated hardware
environments to support the early iterations. Coordination of content for
each iteration across development teams also takes more project
management effort. However, these apparent costs are offset by the
savings you realize through early identification and mitigation of risks
associated with the system architecture. It is a standard engineering
principle that removing architectural defects late in a project is much more
expensive than removing them early. In addition to added expense,
removing defects late in the process also adds uncertainty, as well as
schedule and budget risks, late in a project.

The role of the testing organization within an iterative project is different
from the testing role within a serialized, waterfall-based project. Rather
than allocating a large amount of time for overall system integration
following development, an iterative-based testing organization spends
time integrating, testing, and reporting defects throughout the project
lifecycle.

In summary

RUP SE, delivered as a Rational Unified Process® (RUP) Plug-In, is an
application of the RUP framework to support the development of large-
scale systems that are composed of software, hardware, workers, and
information components. RUP SE includes an architecture model
framework that enables you to consider different formal perspectives
(logical, physical, information, etc.) in order to deliver a solution that
addresses the concerns of the various development stakeholders. A
distinguishing characteristic of RUP SE is that the requirements for system
components are jointly derived in increasing specificity from the overall
system requirements.

RUP SE is ideally suited for projects that:

The Rational Edge -- October 2003 -- Requirements Analysis and Design

● Are large enough to require multiple teams performing concurrent
development.

● Have concurrent hardware and software development.

● Have architecturally significant deployment issues.

● Include a redesign of the underlying information technology
infrastructure to support evolving business processes.

RUP SE provides the system development team with the advantages of
RUP best practices while providing a framework for addressing overall
system issues. Some of the benefits of RUP SE include:

● System team support -- Provides for ongoing collaboration among
business analysts, architects, system engineers, software
developers, hardware developers, and testers.

● System quality -- Provides views that enable teams to address
system quality issues in an architecture-driven process.

● System visual modeling -- Provides UML support for systems
architecture.

● Scalability --Scales upward to very large systems.

● Component development -- Provides workflows for determining
hardware and software components.

● System iterative design and development -- Supports
concurrent design, and iterative development of hardware and
software components.

Notes

1 See Maria Ericsson's IBM Rational whitepaper, "Developing Large Scale Systems Using the
Rational Unified Process" at http://www.rational.com/products/whitepapers/sis.jsp.

2 Sanford Friedenthal et al., "Adapting UML for an Object-Oriented Systems Engineering
Method." Proceedings of the 2000 INCOSE Symposium.

3 Murray Cantor. "Thoughts on Functional Decomposition," The Rational Edge, April, 2003.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

The Rational Edge -- October 2003 -- Requirements Analysis and Design

Copyright Rational Software 2003 | Privacy/Legal Information

	rational.com
	The Rational Edge -- October 2003 -- Requirements Analysis and Design

