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In the August issue of The Rational 
Edge, we began a three-part series to 
provide an overview of the latest 
evolution of Rational Unified Process 
for Systems Engineering,® or RUP 
SE.® RUP SE is an application of the 
Rational Unified Process,® or RUP,® 
software engineering process 
framework. RUP users should note that 
the currently available RUP Plug-In for 
SE is the RUP SE v1 Plug-In, which 
was made available in 2002.

Part I included a discussion of systems, the challenges facing the modern 
systems developer and how RUP SE addresses them, RUP SE Unified 
Modeling Language (UML)-based modeling and requirement specification 
techniques, and the use of UML semantics. Part II focused on system 
architecture and introduced the RUP SE architecture framework, which 
describes the internals of the system from multiple viewpoints. Now, in 
Part III, we will cover requirements analysis and flowdown, and 
specifications for elements of the RUP SE framework. This will include a 
description of the Joint Realization Method, a novel technique for jointly 
deriving the specification of architectural elements across multiple 
viewpoints. We will also include a brief discussion of system development 
with RUP SE.

Editor's note: The RUP SE v1 Plug-In was made generally available in 
2002, and v2 of this plug-in was made available in June of 2003. Although 
the information in this series is consistent with v2, the articles do discuss a 
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few possible extensions to the process framework. Please note that the 
RUP SE Plug-In -- v1 and v2 -- is downloadable from IBM Rational 
Developer Network (http://www.rational.net; authorization required). 

RUP SE and requirements

Following common system practice, RUP SE addresses two types of 
requirements:

1.  Behavioral requirements -- What the system does to fulfill its 
role in the enterprise. In RUP SE, a system's behavior is captured 
by its use cases and their analyses into services. Use cases and 
services may have associated performance requirements. 

2.  Supplementary requirements -- Nonfunctional requirements, 
including design goals (e.g., reliability or cost of ownership), and 
system attributes (e.g., data capacity or total weight).

RUP SE also offers a process pattern for deriving requirements for 
architectural elements:

1.  Determine the blackbox requirements or specifications for a given 
model element.

2.  Decompose that model into whitebox elements, assigning roles and 
responsibilities to these elements.

3.  Study how the elements collaborate to jointly meet the blackbox 
requirements. This usually involves some form of collaboration 
diagram.

4.  Synthesize the analysis of the collaboration to determine the 
blackbox requirements for the elements.

This process pattern is well known,1 and it is particularly interesting that 
Friedenthal et al. adopted it in their Object Oriented System Engineering 
Method (OOSEM).2 

System specification, therefore, means defining use cases, system 
services, and supplementary requirements that, if met, would result in a 
system that meets its business purpose or mission. RUP SE distinguishes 
between allocated and derived requirements. A requirement is allocated if 
a blackbox requirement is assigned to a whitebox element. A whitebox 
requirement is derived if it is determined by studying how the whitebox 
element collaborates with others to meet a blackbox requirement. Both 
the behavioral and supplementary requirements may be derived. Note that 
derived requirements take into account the role of the architectural 
element in the system design. 

Consider the following example. Most automobiles have differentials, the 
devices connecting the drive shaft to the axles that allow the driving 
wheels to go at different speeds whenever the automobile turns a curve. 
This function is necessary because the inner wheel must go more slowly 
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than the outer wheel in order for both wheels to maintain traction. If one 
of the wheels loses traction, the automobile may spin out and possibly flip 
over. Nevertheless, there is no automobile system requirement for a 
differential. The automobile system requirement is simply that the 
automobile maintain traction when it traverses a curve, which can be 
accomplished in a variety of ways that don't involve a differential. For 
instance, either of these alternatives might work:

●     A single driving wheel (as in the three-wheeled vehicles that 
sometimes appear in science-fiction movies).

●     Two motors, one per driving wheel, with some sort of drive-by-wire 
solution.

The convention of the differential prevails either because it is superior 
from an engineering standpoint (i.e., it does a better job of meeting a 
variety of requirements in addition to traction control, such as maintaining 
overall stability, optimizing interior volume, and managing cost of 
materials maintenance) or from a design constraint that the engineer must 
take advantage of previous excellent engineering.

Now, since the differential is not a required element of the automobile, 
there is no mechanism for assigning system requirements to the 
differential. Rather, the differential plays a role in collaboration with other 
elements of the automobile (steering, brakes, etc.) so that they jointly can 
meet the required behavior of the automobile to safely traverse a curve. 
The behavior of the differential, such as "adjust wheel velocity," is derived 
from the system requirement and the role the differential plays.This 
behavior is derived, not allocated.

Further, the differential must meet derived supplementary requirements in 
order to support the system's defined supplementary requirements. For 
instance, the differential will have a weight and volume budget as well as 
a reliability measure.

The use of derived requirements for subsystems collaborating to carry out 
use cases is called logical decomposition. Similarly, determining 
subsystem requirements by allocation is called functional decomposition. 
Generally, logical decomposition is essential for quality systems.3

It follows that the system requirements are derived from an understanding 
of the enterprise services and the role that the system plays in the 
enterprise. In the analysis model, the system architectural elements are 
subsystems, localities, and processes, as described in the System 
architecture section in Part II of this series. It is in the requirements 
analysis discipline that requirements for each of these types of 
architectural elements are determined. For example, with the business 
model in place, RUP SE suggests that you partition the enterprise into the 
system and its actors to derive system requirements. Then, to determine 
system requirements, an analyst may study how the system and its actors 
collaborate to meet the business requirements.

The following sections describe RUP SE's approach to deriving functional 
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requirements for systems and elements of the analysis model. 

Deriving functional requirements through use-case 
flowdown

Use-case flowdown is an activity for deriving functional requirements for 
systems and their elements. Flowdown can be applied to add detail within 
a model level or to specify elements at a lower model level. For example, 
flowdown can be used to determine system services at the context level. 
Similarly, it can be used at the analysis level to identify subsystem 
services and to break subsystems into further subsystems. 

It is important to note that flowdown may be applied recursively -- in 
other words, whitebox elements become blackbox for the next application. 
This allows the team to reason about large systems at the appropriate 
level of specificity. Repeated application of the flowdown activity allows 
teams to add detail while managing a consistent level of abstraction. It 
also permits concurrent design; that is, each whitebox entity can be 
specified sufficiently to be treated as a blackbox entity for further design 
by separate teams. You can use this approach not only to derive 
requirements for elements of the analysis model, but also, with little 
modification, to determine system requirements from business 
requirements.

Performing flowdown in the hierarchical manner we described above 
results in an interesting relationship between services and use cases: 
blackbox services become whitebox use cases. Use cases describe how an 
entity and elements in its context collaborate to fulfill some purpose. Here, 
the purpose of the use-case flowdown is to support delivery of a system 
service. The realization of the service consists of use-case scenarios. For 
each UML subsystem, you can build a context diagram showing system 
actors with which the subsystem collaborates, as well as the peer 
subsystems with which it shares a dependency relationship (these are akin 
to the enterprise and internal actors discussed under System 
Specification in Part I). From the subsystem point of view, the service 
realization is exactly how it collaborates with its actors to carry out its 
role. This is exactly a use-case scenario. Note that flowdown does change 
the common value heuristic of use-case analysis. The use cases in 
flowdown provide value to the blackbox entity, and not necessarily to any 
of the participating actors. 

Simple realization

Use-case flowdown is an extension of use-case realization, an elemental 
practice of object analysis. Use-case realization consists of finding classes 
that participate in carrying out a use-case scenario, and discovering how 
the objects of the various classes collaborate. The realization includes 
specifying the order of objects' messages that are passed during the 
collaboration, and it is captured in a sequence or collaboration diagram. In 
fact, by building sequence diagrams, you can often discover the messages 
a class operation must provide so that its objects can participate in 
realizing its use cases. 
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In RUP SE, this notion of realization is extended in several ways. First, 
realization is applied to model levels higher than design. For example, the 
outcomes of flowdown applied between enterprise and system result in 
identification of system services. If applied between the system and its 
model elements, flowdown results in:

●     A use-case survey for subsystems.

●     Identification of subsystem services and interfaces.

●     A survey of hosted subsystem services and/or supported interfaces 
for localities.

The idea of extending use-case realization to UML subsystems is not new. 
For example, realizations for UML subsystems are often referred to as 
Architectural Interaction Diagrams. 

Here are the flowdown steps for building the system context diagram and 
identifying system services:

1.  Model an enterprise whitebox as a set of collaborating systems.

2.  Model how systems collaborate to realize enterprise services, 
mission, and so forth.

3.  Create a context diagram for the system.

4.  Determine actors (i.e., entities that collaborate with the system).

5.  Identify I/O entities.

6.  Aggregate similar collaborations between the system and its actors 
into use cases.

7.  Add use-case detail: performance, pre- and post-conditions, and so 
forth.

8.  Identify system services -- what the system does to support its use 
cases; aggregate similar whitebox steps.

9.  Add system attributes from your analysis of enterprise needs.

When a realization consists of one type of whitebox element, such as 
classes or UML subsystems, we call this simple realization. An example is 
the flowdown from enterprise to system, as delineated below.

Procedure 1: Joint realization

In future versions of RUP SE, the simple realization described above is 
extended to joint realization: analyzing how the elements of multiple 
viewpoints collaborate in carrying out a service. For example, in joint 
realization, the flowdown might consist of simultaneously determining the 
collaboration of logical, physical, and informational elements. 

Joint realization consists of the following procedure:
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1.  Choose the participating viewpoints. The logical viewpoint is 
mandatory. 

2.  For each whitebox step in realizing a blackbox service, you must: 

❍     Specify the logical element that executes it. 

❍     Model how the additional viewpoints participate. For example, 
you might include:

-Physical viewpoint -- Specify hosting locality; if there are 
two localities, then decompose into two steps.
-Process viewpoint -- Specify executing process; if there 
are two processes, then decompose into two steps.
-Information viewpoint -- Specify which data schema 
element supports handling of any information that is used.

Throughout this process, apply the following joint 
realization rule: If a given logical element whitebox step 
requires more than one element of the other viewpoints, 
divide that step into further steps so that each step 
requires exactly one whitebox element from each 
viewpoint.

3.  Create interaction diagrams for each viewpoint: 

❍     Architecture interaction diagram

❍     Locality interaction diagrams 

❍     Process interaction diagrams 

4.  Budget supplementary requirements for performance, accuracy, and 
so forth, to each step; evaluate/confirm with interaction diagrams. 

Procedure 2: Specify resources with joint realization

Joint realization has a variety of applications. For example, it can be used 
for flowdown from system to logical and worker view to reason about 
automation decisions. Or it can be used for flowdown from system to 
logical, physical, and process elements (this application is described in 
more detail below). To uncover specifications for the system's physical 
resources, you must:

1.  Develop initial analysis model-level views (system whitebox). To do 
this: 

❍     Use object-oriented analysis methods for the logical view. 

❍     Apply physical considerations for the locality view. 

2.  Use joint realization to model each (architecturally significant) 
system service specification, including: 

❍     Collaborating steps for UML subsystems.

❍     Hosting localities.
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❍     Executing process. 

3.  Capture the whitebox performance requirements -- in other words, 
the budgeting of the blackbox performance requirements to the 
whitebox steps. To do this: 

❍     Identify UML subsystem use cases; in other words, for each 
subsystem, identify system services involving that 
subsystem.

❍     For each subsystem, identify its services from applying 
aggregation methods on messages in collaboration.

❍     For each locality, create a survey of hosted subsystem 
services.

❍     For each process, create a survey of executed subsystem 
services. 

4.  Document traceability between system and subsystem use cases, 
and/or system and subsystem services.

Procedure 3: Flowdown from context to analysis model level

The assignment of whitebox steps to subsystems, localities, and processes 
involves a set of design decisions. Each decision adds detail to the role 
that each analysis element plays in the overall system design. In the 
process of making assignments, the team may decide to refactor the 
design, shifting responsibilities from one element to another within a given 
view. Also, note that flowdown provides opportunity for adding an 
appropriate level of detail and refactoring subsystem, locality, and process 
roles and responsibilities.

Table 1 shows an example whitebox flowdown for the system service 
"Closing sale with credit card," using the subsystem (Figure 6) and locality 
model 1 (Figure 8) for a click-and-mortar retail system.

Table 1: Joint realization table
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The next step is to determine the UML subsystem use cases and context. 
A UML subsystem context view, like a system context, consists of the 
subsystem, its actors, and any relevant I/O entities. For a subsystem, its 
actors can consist of its peer subsystems and, possibly, system actors. 
Figure 1 provides a subsystem context diagram example. 
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Figure 1: Subsystem context diagram

Recall that a use case describes how a system and its actors collaborate to 
provide a service of value. For a subsystem, the service of value is the 
system service itself. It follows that for each subsystem, its use cases are 
exactly the system services in which it collaborates. If you are going to 
partition the development effort along subsystem boundaries or as a basis 
for developing test cases, it is useful to keep a use-case survey for 
subsystems. 

You can find subsystem services by sorting the service whitebox steps by 
subsystem. For each subsystem, sort the whitebox steps and aggregate 
similar steps, as shown in Table 2. This results in the specification of 
services provided by each subsystem. 

Table 2: Example survey of locality hosted services

Locality Name: services
Store Processing

Locality Responsibility:
This locality hosts central store sales transactions and accounting. It 
provides the interface to the central office and credit card 
processing. 

Subsystem 
Service

Subsystem System 
Service

Service 
Whitebox Text
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Initiate Credit 
Card Sale

Order Processing Enter a sale Order 
Processing 
starts a sales 
list

Add Product data Order Processing Enter a sale The scanner 
data is sent to 
order 
processing, 
which retrieves 
name, price, 
and taxable 
status from an 
inventory and 
updates list

Compute Total Order Processing Enter a sale Order 
Processing sums 
the price and 
computes the 
taxes.

After determining the subsystem services, you can sort the set of 
subsystem services by locality or by process. The survey of hosted 
services for each locality expresses what computing occurs at the locality 
as well as the associated performance requirements. This information 
provides input to the specification of physical components that will be 
deployed at the locality. Similarly, the survey of executed services for 
each process serves as input to the specification of software components. 
These activities add the following steps to the joint realization process:

●     For each locality, create a survey of hosted services (such as those 
shown in Table 2).

●     For each process, create a survey of executed services.

We'll describe component specification more fully below.

An alternate approach for associating subsystem services to localities is to 
define a subsystem interface comprising services that are hosted on the 
locality, and then associate that interface with the locality. This approach 
has the benefit of keeping the service-to-locality association fully 
contained in the UML model. 

The textual description in the whitebox flow of events can also be 
expressed as a set of sequence or collaboration diagrams. These diagrams 
convey the traffic between analysis elements: Each diagram is a sequence 
diagram whose objects are proxy classes for the analysis elements. The 
messages are invocations of the subsystem services. Figures 2 and 3 show 
the subsystem and locality interaction diagrams for the flow of events 
described in Table 2.
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Figure 2: Example subsystem interaction diagram
Click to enlarge

Figure 2 provides insight into the coupling and cohesion of the 
subsystems. This insight may be used to refactor the subsystem design; if 
there is a lot of traffic between a pair of subsystems, for example, it may 
make sense to combine them. Figure 3 is an example locality interaction 
diagram.
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Figure 3: Example locality interaction diagram

The traffic in Figure 3 shows what data must flow between the localities. 
This information is used to specify associations between localities.

Supplementary requirements flowdown

Supplementary requirements are initially captured as system class 
attributes or tagged values. As part of the analysis process, the system 
architects develop an initial locality diagram. The locality view is a 
synthesis of the nonfunctional considerations and provides a context for 
addressing how nonfunctional requirements such as reliability and capacity 
will be addressed. 

Standard engineering practice allows for the budgeting of capacity, 
permitted failure rates, and so forth. This results in a set of derived 
supplementary requirements for each locality element. Locality 
characteristics are determined from these requirements. 

Component specification

Moving from the analysis to the design level of an architecture entails 
determining the hardware and software component design. This design-
level specification consists of the components to be deployed: hardware, 
software, and workers.

Hardware components are determined by analyzing the localities, along 
with their derived characteristics and hosted subsystem services. With this 
information, you can do descriptor-level realizations of the localities. 
Descriptor node diagrams specify the components, servers, workstations, 
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workers, and so forth, without showing specific technology choices. Figure 
4 is an example descriptor node diagram that realizes the locality diagram 
shown in Figure 8. The fulfillment locality is realized as four components: a 
warehouse gateway, a mailing/postage system, and two workers.

The descriptor nodes inherit characteristics from their localities through an 
allocation or budgeting process.

Figure 4: Example descriptor node diagram

The implementation hardware components -- in other words, the actual 
deployed set of hardware -- are determined by making 
cost/performance/capacity trades from the descriptor view. In fact, a 
system may have more than one hardware configuration, each meeting 
different price/performance points.

Components are determined by specifying a set of object classes, and 
then compiling and assembling the code associated with those classes into 
executable files. A fully considered software component design must 
reflect a variety of concerns:

●     Locality -- where the components need to run.

●     Hosting -- processor instruction set and memory restrictions for 
the executing code.

●     Concurrency -- separation of processing into different hosts or 
memory spaces to address reliability and related concerns.

It follows that the information needed to specify components includes the 
surveys of hosted subsystem services for localities and their realized 
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hardware components, surveys of executed services for processes, and 
the view of participating classes (VOPC) for the subsystem services.

For each hardware configuration, the RUP SE method requires creation of 
a component from the classes participating in all the subsystem services 
hosted on each node. If those services need to be executed in more than 
one process, we divide the components further by assigning the 
participating classes of the subsystem services executed by each of the 
processes. Note that some subsystem services may be executed by more 
than one process, and therefore their classes may be in more than one 
component. We complete the process by dividing the components further 
to account for memory constraints (such as .exe and .dll trade-offs), 
shipping media limitations, and so forth.

These activities result in a set of specific hardware and software 
components that make up the system.

System development

RUP SE projects are managed much the same as any RUP project. 
However, because of the size of, and additional activities required for, 
most systems engineering efforts, there are some differences, which we 
will discuss briefly in this section.

Project organization

Moving from a traditional serialized process ("waterfall" process) to an 
iterative process has profound implications with respect to how a project 
must be organized. In a serialized process, staff members are often 
assigned to a project until their artifacts are complete. For example, the 
engineering staff completes the specifications, hands them off to the 
development staff, and moves on to the next project. In any RUP-based 
project, no such handoff occurs. Rather, the artifacts evolve iteratively 
throughout the development process. This requires that the staff members 
responsible for project artifacts such as the requirements database and 
UML architecture, must remain assigned to the development project 
throughout its lifecycle.

Figure 5 shows the organization for a typical RUP SE project. It consists of 
a collection of development teams, each with a project manager and a 
technical lead. There are also teams that deal with overall system 
architecture and project management.
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Figure 5: A RUP SE organization chart

The teams in this figure have the following functions: 

●     The Enterprise Modeling Team analyzes the business need and 
generates business models and/or related artifacts, such as concept 
of operations documents.

●     The System Architecture Team works with the Enterprise 
Modeling Team to create the system context and derive system 
requirements. This team develops the subsystem and locality views 
as well as their derived requirements. Throughout the development 
process, the System Architecture Team serves as a technical 
escalation point to resolve architectural and engineering issues. This 
team also works with the development teams to specify the 
software component architecture. Team members include the 
technical leads of the development teams.

●     The Project Management Team looks after the standard project 
issues such as project reviews, resource planning, budget tracking, 
earned value and variances, and coordinated iteration planning. 

●     For each iteration, the Integration and Test Team receives the 
code and hardware components from the development teams, 
builds the software components, and installs the hardware and 
software components in a laboratory setting. The team also plans, 
executes, and reports on the system tests for each iteration.

●     The Subsystem Development Teams are responsible for the 
design and implementation of the software realization of one or 
more subsystems. These teams base their work on the derived use 
cases discovered during flowdown activity. Depending on the size 
and complexity of the system, the subsystem use cases may be 
realized as class design and associated code modules, or the 
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subsystems may be further decomposed into subsystems. In the 
latter case, a subsystem team may be further decomposed into sub-
subsystem teams, and a subsystem architecture team may be 
created. This process enables scalability of the RUP SE approach. 

●     The Hardware Development and Acquisition Teams are 
responsible for the design, specification, and delivery of the 
hardware components. 

●     The Deployment Operations and Maintenance Team handles 
operational issues and serves as a liaison with the users. This team 
might install and maintain the system in the field. In other cases, 
this team might handle user defect reporting and provide patches to 
the field.

Concurrent design and implementation

An attractive feature of the RUP SE organization approach is that it scales 
to very large programs. Once you decompose the system into subsystems 
and localities with their derived requirements, each of these analysis 
model elements is suitable for concurrent design and development. As we 
noted, you can assign UML subsystems to separate development teams, 
and assign localities to hardware development or acquisition teams. Each 
team works from its derived survey of hosted services or assigned 
interfaces to develop its portion of the design model and implementation 
models. That means the design and implementation of the design 
elements can proceed in parallel.

For very large systems, a system-of-systems approach can be adopted. In 
such cases, each UML subsystem has its own locality mode, and you need 
only address logical concerns. This permits application of the organization 
structure shown in Figure 5 at the subsystem level, providing even more 
scalability.

Iterative development, integration, and testing

One central feature of the RUP approach is that the system is developed in 
a series of iterations, each of which produces a working prototype with 
incrementally new functionality. The system is integrated and tested at 
each iteration, and the iteration testing is a subset of the system tests. 
Consequently, the final iteration results in a fully tested system ready for 
transition to the operational setting.

The timing and content of iterations are captured in an iteration plan early 
in the project. However, like any RUP artifact, the iteration plan is updated 
continually to reflect the emerging understanding of the system as it 
comes together.

The content of an iteration, captured in a system iteration plan, is 
specified by what use cases and supplementary requirements are realized 
by the components developed in the iteration. Each iteration is tested by 
the subset of applicable system test cases.
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Recall that subsystems have derived services that trace from system 
services. This tracing provides a basis for derived iteration plans for the 
subsystems and localities. That is, the content of each system iteration is 
traceable to the functionality that needs to be provided by the subsystems 
and localities to support the iteration. In practice, the development teams 
will negotiate the iteration content to reflect their development 
practicalities. For example, an early system iteration cannot require full 
functionality of a subsystem. Compromises must be made.

A good system iteration plan provides the opportunity to identify and 
resolve system technical risks early, in contrast to the typical late-stage 
panic of the waterfall-based integration and testing phase. The technical 
risks can involve both functional and nonfunctional requirements. For 
example, an early integration can shake out system bring-up and fail-over 
issues that cannot be fully understood with detailed design and interface 
specifications alone. In practice, the early iterations should validate that 
the architecture is sufficient to meet these sorts of nonfunctional 
requirements.

Iterative system development may seem more expensive because it 
requires more testing, as well as scaffolded or simulated hardware 
environments to support the early iterations. Coordination of content for 
each iteration across development teams also takes more project 
management effort. However, these apparent costs are offset by the 
savings you realize through early identification and mitigation of risks 
associated with the system architecture. It is a standard engineering 
principle that removing architectural defects late in a project is much more 
expensive than removing them early. In addition to added expense, 
removing defects late in the process also adds uncertainty, as well as 
schedule and budget risks, late in a project.

The role of the testing organization within an iterative project is different 
from the testing role within a serialized, waterfall-based project. Rather 
than allocating a large amount of time for overall system integration 
following development, an iterative-based testing organization spends 
time integrating, testing, and reporting defects throughout the project 
lifecycle.

In summary

RUP SE, delivered as a Rational Unified Process® (RUP) Plug-In, is an 
application of the RUP framework to support the development of large-
scale systems that are composed of software, hardware, workers, and 
information components. RUP SE includes an architecture model 
framework that enables you to consider different formal perspectives 
(logical, physical, information, etc.) in order to deliver a solution that 
addresses the concerns of the various development stakeholders. A 
distinguishing characteristic of RUP SE is that the requirements for system 
components are jointly derived in increasing specificity from the overall 
system requirements. 

RUP SE is ideally suited for projects that:
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●     Are large enough to require multiple teams performing concurrent 
development.

●     Have concurrent hardware and software development.

●     Have architecturally significant deployment issues.

●     Include a redesign of the underlying information technology 
infrastructure to support evolving business processes.

RUP SE provides the system development team with the advantages of 
RUP best practices while providing a framework for addressing overall 
system issues. Some of the benefits of RUP SE include:

●     System team support -- Provides for ongoing collaboration among 
business analysts, architects, system engineers, software 
developers, hardware developers, and testers. 

●     System quality -- Provides views that enable teams to address 
system quality issues in an architecture-driven process.

●     System visual modeling -- Provides UML support for systems 
architecture. 

●     Scalability --Scales upward to very large systems.

●     Component development -- Provides workflows for determining 
hardware and software components.

●     System iterative design and development -- Supports 
concurrent design, and iterative development of hardware and 
software components.

Notes

1 See Maria Ericsson's IBM Rational whitepaper, "Developing Large Scale Systems Using the 
Rational Unified Process" at http://www.rational.com/products/whitepapers/sis.jsp. 

2 Sanford Friedenthal et al., "Adapting UML for an Object-Oriented Systems Engineering 
Method." Proceedings of the 2000 INCOSE Symposium. 

3 Murray Cantor. "Thoughts on Functional Decomposition," The Rational Edge, April, 2003. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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