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Last month we began a three-part series to provide an overview of the latest 
evolution of Rational Unified Process for Systems Engineering,® or RUP SE.® RUP SE 
is an application of Rational Unified Process,® or RUP,® software engineering 
process framework. RUP users should note that the currently available RUP Plug-In 
for SE is the RUP SE v1 Plug-In, which was made available in 2002.

Part I included a discussion of systems, the challenges facing the modern systems 
developer and how RUP SE addresses them, RUP SE Unified Modeling Language 
(UML)-based modeling and requirement specification techniques, and the use of 
UML semantics. This month, in Part II, we will focus on system architecture and 
introduce the RUP SE architecture framework, which describes the internals of the 
system from multiple viewpoints. Part III, to be published in October, will cover 
requirements analysis and flowdown, an introduction to the method for deriving 
requirements, and specifications for the elements of the RUP SE framework. This will 
include a description of the Joint Realization Method, a novel technique for jointly 
deriving the specification of architectural elements across multiple viewpoints. Part 
III will also include a discussion of RUP SE programmatics.

Editor's note: The RUP SE v1 Plug-In was made generally available in 2002, and v2 
of this plug-in was made available in June of 2003. Although the information in this 
series is consistent with v2, the articles do discuss a few possible extensions to the 
process framework. Please note that the RUP SE Plug-In -- v1 and v2 -- is 
downloadable from IBM Rational Developer Network (authorization required). 
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Definitions

A clear understanding of RUP SE is impossible 
without a grounding in several terms and 
concepts. [Other standards may define these 
terms differently; what we strive for here is 
internal consistency.] 

System decomposition: Successful system 
engineering relies on the ability to reason about 
many things at once. System-level 
decomposition is one powerful technique for 
accomplishing this. 

A system may be decomposed in two ways: 

●     Into further systems using logical 
decomposition; this is the so-called 
"systems of systems" decomposition.

●     Into system components that make up the delivered system.

System model dimensions: A RUP SE system model has two dimensions, which 
allow for separation of concerns by different teams involved in the design and 
construction of the system. 

●     Viewpoint dimension: the context for addressing a limited set of quality 
concerns.

●     Model level dimension: UML diagrams that capture a specific level of design 
detail.

Model: A representation of a system, including views that capture all areas of 
concern, levels of specificity, and model entity relationships. 

Model level: The level of abstraction at which each model may be constructed, 
from the more general -- hiding or encapsulating detail -- to the more specific -- 
exposing more detail and explicit design decisions.

Viewpoint: As the name implies, a viewpoint is a notional "position" from which 
some aspects or concerns about the system are made visible, implying the 
application of a set of concepts and rules to form a conceptual filter. To understand 
a system, it is usually not sufficient to examine the actual system itself, which is 
why models are constructed to represent the various viewpoints involved.

View: A projection of a model level that shows entities that are relevant from a 
particular viewpoint. These projections will typically be illustrated by diagrams of 
some kind. The intersection of viewpoint and model level (of abstraction) will 
contain (or at least identify) views of model(s) relevant to that viewpoint (concern) 
at that level of abstraction.

Viewpoints

The RUP SE framework provides a set of viewpoints, as expressed in Table 1.



Table 1: System model viewpoints

Viewpoint Expresses Concern

Worker 

 

Roles and 
responsibilities of 
system workers 

●     

Worker activities

●     

Automation 
decisions 

●     

Human/system 
interaction

●     

Human 
performance 
specifications

Logical Logical 
decomposition of 
the system as a 
coherent set of 
UML subsystems 
that collaborate 
to provide the 
desired behavior

  

●     

Adequate system 
functionality to 
realize use cases

●     

Extensibility and 
maintainability

●     

Internal reuse

●     

Good cohesion and 
connectivity

Physical Physical 
decomposition of 
the system and 
specification of 
the physical 
components

●     

Adequate physical 
characteristics to 
host functionality 
and meet 
supplementary 
requirements

Information Information 
stored and 
processed by the 
system 

 

●     

Sufficient capacity 
to store data

●     

Sufficient 
throughput to 
provide timely 
access to the data



Process Threads of 
control, which 
carry out the 
computation 
elements 

 

●     

Sufficient 
partitioning of 
processing to 
support 
concurrency and 
reliability needs

 

The viewpoints in Table 1 are some of the most common ones for software-intensive 
systems. Many system architectures require additional viewpoints that are domain-
specific: safety, security, and mechanical viewpoints, for example. 

Viewpoints represent different areas of concern that must be addressed in the 
system architecture and design. If there are system stakeholders or experts whose 
concerns are important to the overall architecture, there likely is a need for a set of 
views to capture their design decisions.

It is important to build a system architecture team with staff members whose skills 
will enable them to manage the various viewpoints. The team might include 
business analysts and users who take primary responsibility for the worker 
viewpoint, software architects who attend to the logical viewpoint, engineers who 
concern themselves with the physical viewpoint, and experts on domain-specific 
viewpoints.

Model levels

In addition to viewpoints, building a system architecture requires levels of 
specification. As the architecture is developed, it evolves from a general, abstract 
specification to a more specific, detailed specification. Consistent with RUP 
guidelines, there are four architectural model levels in RUP SE, as described in Table 
2.

Table 2: RUP SE model levels

Model Level Expresses

Context

 

The system and its actors

Analysis Initial system partitioning in each of the 
viewpoints to establish the conceptual 
approach

  

Design Realization of the analysis level to 
hardware, software, and people



Implementation Realization of the design model into 
specific configurations

 

 

Through these levels, the design goes from the abstract to the physical. The context 
model level captures all of the external entities (actors) that interact with the 
system. These actors may be either external or internal to the enterprise that 
deploys the system. In either case, the actors may be human beings or other 
systems. At the analysis level, the partitions do not reflect choices of hardware, 
software, and people. Instead, they reflect design approaches for dividing up what 
the system needs to do and how the effort should be distributed. At the design 
level, decisions are made regarding the sorts of hardware and software components 
and worker roles that are needed. At the implementation level, specific choices of 
hardware and software technology are made to implement the design. For example, 
at the design level, a data server is specified. At the implementation level, the 
decision is made to use a specific platform running a specific database application. 

It is important to maintain traceability among these levels. As the enterprise or 
mission changes, the context level views need to be amended, along with any 
affected lower-level views. As the underlying technology changes, the 
implementation level and possibly the design level can be affected. In brief, the 
impact of enterprise changes flows down, whereas the impact of technology changes 
flows up.

System architecture views

The next step is to capture the system architecture in a set of views that express 
the architecture from various viewpoints and model levels. Each of the cells in Table 
3 provides a view of the system. Note that at the implementation level, a single 
diagram captures the realization of hardware and software components for each 
system configuration.

Table 3: RUP SE model framework

Model levels Model viewpoints

Worker Logical Information Physical Process

Context

 

UML 
organization 
view

System 
context 
diagram

Enterprise 
data view

Enterprise 
locality 
(distribution 
of 
enterprise 
resources)

Business 
processes

Analysis Generalized 
system 
worker view

  

Subsystem 
view

System data 
view

System 
locality 
view

System 
process 
view



Design System 
worker view

Subsystem 
class 
views 

Software 
component 
views

System data 
schema

Descriptor 
node view

Detailed 
process 
view

Implementation Worker role 
specifications 
and 
instructions

 

Configurations: deployment diagram with software 
and hardware system components

 

The relationships among model levels, viewpoints, and views can be seen in Figure 1 
below.

Figure 1: Model levels, viewpoints, and views

The domain-specific viewpoints also should have artifacts in place for one or more of 
the levels. The set of project artifacts within this framework should be a part of the 
project development case. Let us briefly investigate each of the viewpoints.

Note: At this writing, UML 2.0 is being readied for adoption and OMG has released a 
Request for Proposal for a Systems Profile for UML. Once UML 2.0 and the Systems 
profile are adopted, the RUP SE view semantics will be updated to take full 
advantage of those standards.

Worker viewpoint

Workers are sufficiently unique to warrant their own viewpoint. Workers are both 
logical and physical entities. They are logical in that they can, when instructed, 
provide services and collaborate with other logical entities. They are physical in that 
they are limited in terms of performance, responsiveness, and capacity. Of course, 
workers are blackbox entities not subject to further subdivision in the model. 



Reasoning about how workers interact with the automated portions of the system 
and each other is a system engineering specialty. The worker viewpoint provides the 
setting for this reasoning.

Also, note that system workers are not the same as business workers. System 
workers are human beings who are a part of the system. They are not system 
actors, as they are partially responsible for delivery of the system services. In the 
RUP SE framework, system workers are represented as stereotyped classes. They 
may be associated if they have dependencies on one another or some other 
relationship. In the generalized system view, generic system workers are expressed 
with low detail.

In some applications, it is useful to introduce an abstraction of the automated part 
of the system -- the machine, which differs from a general system in that its 
realization contains no workers. The generalized workers and the machine may be 
used in the flowdown workflow to determine worker specifications and to reason 
about automation decisions. Figure 2 shows an example of a worker diagram.

 

Figure 2: A RUP SE worker diagram

For example, if you were modeling a system for a ship, at the analysis model level 
you might represent a sailor as a general system worker. At the design level, 
however, you might define a multitude of specific sailor roles.

Note: You may want to include an additional stereotyped classifier in the worker 
diagram -- a machine -- to support automation decisions. In the joint realization 
method discussed below, the machine would perform whitebox logical steps to be 
supported through automation. 

Logical viewpoint

The logical viewpoint is the most familiar to object analysts. It describes, at different 
levels of abstraction, the kind of objects that realize the system. The elements of 
the views in the logical viewpoint are classes and UML subsystems. In UML 1.4, 
systems and subsystems inherit from classifiers and packages; there is no UML 
syntax that captures both the classifier and package aspects of a subsystem. 
Normally in UML, subsystems are represented as packages with dependencies. In 
RUP and RUP SE, proxy classes are used to represent the classifier semantics. In 
RUP SE, we stereotype the proxies and the packages as systems or subsystems as 



  

appropriate, and, as appropriate, add the system semantics described above to 
subsystems. Figure 3 shows a UML subsystem view for a click-and-mortar retail 
system using the common notation. One could choose to use subsystem classifiers 
in place of the packages in this figure.

Figure 3: Click and mortar subsystem diagram
Click to enlarge

Physical viewpoint

In systems engineering, the physical resources are a part or aspect of the system. It 
follows that semantics need to be provided to reason about the properties of the 
elements of the physical realization of the system. More specifically, the outcome of 
a systems engineering environment includes a detailed specification of the hardware 
to be built or acquired. Note that systems engineering does not include the 
hardware engineering disciplines (mechanical, electrical) but does include sufficient 
specification to be used as input to the hardware design team. 

As shown in Table 3, RUP SE uses an analysis level, physical viewpoint diagram 
called System locality view. In the physical viewpoint, the system is decomposed 
into elements that host the logical subsystem services. Locality diagrams are the 
most abstract expression of this decomposition. They express where processing 
occurs without tying the processing locality to a specific geographic location, or even 
the realization of the processing capability to specific hardware. Locality refers to 
proximity of resources, not necessarily location, which is captured in the design 
model. For example, a locality view might show that the system enables processing 
on a space satellite and a ground station. The processing hosted at each locality is 
an important design consideration.

The locality diagrams show the initial partitioning, how the system's physical 
elements are distributed, and how they are connected. The term locality is used 
because locality of processing is often an issue when considering primarily 
nonfunctional requirements. 



As shown in Figure 4, locality diagrams consist of two elements:

●     Localities: groupings of physical resources that enable a conceptual, physical 
partitioning of the system. Their icon is a rounded cube. 

●     Connections: linkages between the localities that may be used to pass data, 
service requests, or I/O entities. Connections are represented in UML as 
stereotyped associations.

Figure 4: Locality diagram elements

Locality semantics

Localities are used to realize the physical characteristics of the system class, and 
their semantics derive from those associated with the physical nature of the system. 
In particular, localities have class and instance attributes, and measures of 
effectiveness captured as tagged values. Localities have two default sets of tags:

●     Quality: reliability, availability, performance, capacity, and so on

●     Management: cost and technical risk

These locality characteristics form a nominal set. Each development team should 
determine the best set of characteristics for their project. This determination could 
be a development-case-specification activity. 

Locality characteristics are set to meet their derived requirements. There is a subtle 
difference between characteristics and requirements. For example, for good 
engineering reasons, you might specify a locality that exceeds requirements.

In the section on Localities, services, and interfaces below, we will show that 
localities host subsystem services. 

Connection semantics



Localities are joined by connections, which represent the physical linkages between 
localities. Connections are stereotyped associations with tagged values, again 
capturing characteristics. Nominal connection tags are:

●     Throughput: transfer rate, supported protocols

●     Management: cost, technical risk

Since localities host services, connections must pass service invocations. In fact, 
there are at least three types of flow we have to consider in systems: 

●     Control flow

●     Data flow

●     Material flow

Consider, for example, the throttle in an automobile. The throttle linkage is the 
control connection that transmits the service requests (open or close) to the 
throttle. The gas line is also a connection to the throttle. The gasoline itself is not a 
service request, but rather a raw material used by the throttle to perform its 
services. Finally, there may be a network data connection to the throttle containing 
an ongoing stream of environment and automobile status data that is used to adjust 
the response to the throttle. 

Localities and nodes

Recall that UML nodes are classifiers that have processing ability and memory.1 
Used in deployment diagrams, the UML node semantics support reasoning about the 
hosting processors for the software components. The implicit assumption is that the 
physical resources are outside the software under consideration. For example, in 
software engineering, the hardware is often seen as an enabling layer below the 
operating system. 

The UML does provide design and implementation-level artifacts for deployment 
diagrams:

●     Descriptor diagrams for the design level

●     Instance diagrams for the implementation level

In particular, instance deployment diagrams are meant to capture configurations 
and actual choices of hardware and software, and to provide a basis for system 
analysis and design, serving as an implementation level in the physical viewpoint. 
The UML Reference Manual describes an instance version of a deployment diagram 
as "a diagram that shows the configuration of run-time processing nodes and 
component instances and objects that live in them."1

In RUP SE, this intent is preserved. A node, then, is a special sort of locality that is 
used at the design and implementation model levels to specify physical resources 
that execute software. However, as a kind of locality, RUP SE nodes can be 
stereotyped to include all of the locality semantics. Note that these semantics differ 
from standard nodes in UML. Localities are not so much stereotyped nodes as nodes 
are stereotyped localities. UML 2.0 will provide better means for dealing with 



physical partitioning.

Localities, services, and interfaces

A locality specifies the physical resources that provide logical services. In practice, 
each locality will provide a subset of the services of one or more of the logical 
subsystems. The determination of those services is an outcome of the joint 
realization workflow we will describe below.

The set of hosted subsystem services for a given locality can be captured in a couple 
of ways:

●     Survey of hosted subsystem services document

●     Associated subsystem interfaces

The first method is simpler, associating a requirements document with a locality. 
The second requires a more sophisticated use of the UML. Subsystems are 
classifiers, and their services are classifier operations. In addition, the UML allows 
operations, and therefore subsystem services, to be organized into interfaces. That 
is, an interface is a subset of subsystem services. In this second approach, one 
defines the needed interfaces for each of the subsystems and then assigns them to 
the appropriate localities. Generally, there will be more than one interface 
associated to a locality.

Design trades

"Design trades" is the name of a common system engineering technique: building a 
set of alternate design approaches; analyzing the cost, quality, and feasibility of the 
alternatives; and then choosing the best solution. The locality view supports design 
trades by containing more than one locality diagram, each representing a different 
conceptual approach to the physical decomposition of the system. 

Figures 5 and 6 are locality diagrams that document different engineering 
approaches to a click-and-mortar enterprise with a number of retail stores, central 
warehouses, and a Web presence. The first solution (Figure 5) depicts processing 
capability in the stores. The second solution (Figure 6) shows all terminals 
connected directly to a central office processor. In each case, characteristics can be 
set for the localities that are required to realize the design. Today, most people 
would agree that Figure 5 represents a better design; however, the solution in 
Figure 6 may be considered superior in a few years.



Figure 5: System locality view -- Example 1

 

Figure 6: System locality view -- Example 2

 

Locality decomposition and realization

Like subsystems, localities can be decomposed hierarchically into further localities. 
It is tempting to use aggregation to associate the localities with the sublocalities. 
However, there is a critical difference between the whole-part relationship in a 
physical decomposition and the relationship normally expressed with class 
aggregation: In common usage, when a class object (whole) is aggregated from 



other class objects (parts), the whole's attributes include the attributes of the parts. 
The attributes of the whole in a system locality are functions of the attributes of the 
parts. A simple example is that the weight of the whole is the sum of the weight of 
the parts. Often the relationship between a whole attribute and a part attribute is 
much more complex, yet there are no current semantics in the UML to express 
functional relationships between attributes. A workaround for capturing the 
relationship can be inserted in the model, using private attributes and operations 
that carry out the functions.

When realizing localities as physical components, we suggest that the realization be 
hierarchical. That is, each component is part of the realization of no more than one 
locality. Otherwise, it is difficult to maintain the traceability of derived nonfunctional 
requirements between localities and the components. However, you need not follow 
this suggestion if you want to have reusable components across localities. In this 
case, of course, the components will have to meet the most stringent requirements, 
discovered through flowdown of the system requirements across localities.

In addition, in some cases it makes sense to create multiple realizations of the same 
locality, flowing down to multiple system implementations. For example, one might 
have a product line with different implementations to support a range of 
price/performance points.

Information viewpoint

The use of UML for both object and relational database modeling is a well-developed 
practice that RUP SE makes use of in the information viewpoint. Note that 
maintaining the database modeling in the system model permits overall system 
coherency by supporting associations between data and functional classes, and by 
assigning database components to localities. 

Process viewpoint

The process viewpoint is also represented using standard UML.3 Figure 7 shows an 
example of a system process view.



Figure 7: Sample system process view

Moving between model levels

Moving down model levels adds specificity, not accuracy, to the models. At each 
level, you need to be as accurate as possible in specifying model elements, because 
accuracy at each level adds to the understanding of the system and discipline of the 
process. As you move down the levels, each view is a more specific decision, 
resulting in configuration items at the implementation level. It is important to note 
that the model elements at one level establish the requirements at the next level. 
Or, as indicated in Figure 8, we can say that each model level realizes requirements 
discovered at a higher level. For example,

●     The analysis model level shows how requirements specified in the context 
model level are met.

●     The design model level shows how requirements arising from the system 
analysis model level are met.

●     The implementation model level meets design specifications.

 



 

Figure 8: Lower model levels realize requirements established at upper 
model levels

Click to enlarge

Figure 9 shows an example of how the physical viewpoint at the design level 
contains a descriptor node diagram, which shows a physical design that realizes 
each locality. 

Because each model level establishes requirements or specifications to be realized 
at the next lower level, you can maintain traceability between levels by capturing 
how design elements meet those specifications.

 

Figure 9: A realization of the click-and-mortar locality view
Click to enlarge

In practice, as a team develops a model level, they may likely discover that the 
upper level should be revised because, for example, one or more elements it 



specified cannot be realized. Hence, as development proceeds, no level is ever really 
"frozen"; each is maintained throughout development. However, as development 
proceeds, the focus of the effort typically moves down, level by level.

Notes

1 Grady Booch, James Rumbaugh, and James Jacobson, The Unified Modeling Language User Guide. 
Addison Wesley, 1999, p.358. 

2 Ibid, p.252ff. 

3 Ibid, p.455.

For more information on the products or services discussed in this article, 
please click here and follow the instructions provided. Thank you! 
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