Rational Software


ClassicsCD.com

Measurement Plan
Version <1.0>

Revision History

	Date
	Version
	Description
	Author

	05 August 2002
	1.0
	Initial Version
	Lou <Project Manager>

	
	
	
	

	
	
	
	

	
	
	
	


Table of Contents

51.
Introduction


51.1
Purpose


51.2
Scope


51.3
Definitions, Acronyms, and Abbreviations


51.3.1
ACWP


51.3.2
Base measure


51.3.3
BCWP


51.3.4
BCWS


51.3.5
CPI


51.3.6
CV


51.3.7
Derived measure


51.3.8
Information need


51.3.9
Measurable concept


61.3.10
Measurable construct


61.3.11
Measure (noun)


61.3.12
Measure (verb)


61.3.13
Measurement


61.3.14
SPI


61.3.15
SV


61.4
References


61.5
Overview


72.
Management Goals and Subgoals


73.
Measures


83.1
Schedule and Progress Measures


83.1.1
Project Tasks Complete


93.1.2
Late Tasks


93.1.3
Requirements Status


103.1.4
Use Case Status


113.1.5
Change Request Status


113.1.6
Change Requests by Priority


123.1.7
Test Case Status


133.2
Resource and Cost Measures


133.2.1
Earned Value versus Budget Cost


133.2.2
Work Hours


143.2.3
Schedule Performance Index (SPI)


153.2.4
Cost Performance Index (CPI)


163.2.5
Schedule Variance (SV)


163.2.6
Cost Variance (CV)


173.3
Product Size and Stability Measures


173.3.1
Lines Added, Modified, and Deleted


183.3.2
Requirements


183.3.3
Requirements Churn (Revisions)


193.3.4
Use Cases


203.3.5
Use Case Steps


203.4
Product Quality Measures


203.4.1
Defects by Severity


213.4.2
Age of Defects


224.
Primitive Measures


224.1
Template for a Microsoft Project Measures


234.2
Template for Defect Measures


234.3
Template for Enhancement Request Measures


244.4
Template for Feature Requirement Measures


244.5
Template for Use Case Requirement Measures


254.6
Template for Requirements Churn Measure


254.7
Template for Test Case Executed Measures


254.8
Template for Test Case Planned Measures


264.9
Template for Test Case Planned Measures


265.
Annexes


265.1
Data Transformations


265.1.1
SPI, CPI, Cost Variance, Schedule Variance


265.1.2
Age of Defects


265.1.3
Test Case Results





Measurement Plan
1. Introduction

The primary objective of a measurement program is to generate information that provides insight into project information needs so that project managers, as well as any other management stakeholders, can make informed decisions based on objective data.

1.1 Purpose

The purpose of this Measurement Plan is to document the measurements that the ClassicsCD.com project will collect and report so that management stakeholders can make informed decisions.

1.2 Scope

This plan is limited to the ClassicsCD.com project and is not intended to infringe upon the detailed process/procedures used within the development team.

1.3 Definitions, Acronyms, and Abbreviations

For the purpose of this Measurement Plan, the following definitions, acronyms, and abbreviations apply.

NOTE: Many of the definitions listed have been adopted from ISO/IEC 15939 [1] as well as from the Practical Software Measurement (PSM) [2].

1.3.1 ACWP

Actual cost of work performed

1.3.2 Base measure

Measure defined in terms of an attribute.  A base measure is also fundamentally independent of other measures

1.3.3 BCWP

Budgeted cost of work performed.  Also called earned value.

1.3.4 BCWS

Budgeted cost of work scheduled

1.3.5 CPI

Cost performance index

1.3.6 CV

Cost variance

1.3.7 Derived measure

Measure that is defined as either function of one or more values of base measures.

1.3.8 Information need

Measures are defined and implemented according to the information need of a project decision makers.

1.3.9 Measurable concept

An idea about the entities that should be measured in order to satisfy an information need.

1.3.10 Measurable construct

A measurement construct specifies exactly what will be measured and how the data will be combined to produce results that satisfy the information need.

1.3.11 Measure (noun)

Variable to which a value is assigned as the result of measurement.

1.3.12 Measure (verb)

To make a measurement.

1.3.13 Measurement

Set of operations having the object of determining a value of a measure.

1.3.14 SPI

Schedule performance index

1.3.15 SV

Schedule variance

1.4 References

· [1] ISO/IEC 15939:2002, “Software Engineering – Software Measurement Process.”  Geneva, Switzerland, 2002.

· [2] McGarry, John, Card, David, Jones, Cheryl, Layman, Beth, Clark, Elizabeth, Dean, Joseph, Hall, Fred, Practical Software Measurement: Objective Information for Decision Makers.   Boston, MA: Addison-Wesley, 2002.

· [3] Royce, Walker, Software Project Management: A Unified Framework.  Boston, MA: Addison-Wesley, 1998.

1.5 Overview

Measures should be evaluated in terms of the added value they provide to a project or an organization.  They should only be deployed where the benefit can be identified.  Measures not used in the management process should be “dropped.”

All projects are chartered with specific objectives.  These objectives are typically defined in terms of system capabilities, resource budgets, schedules and milestones, quality, and business and system performance targets.  Success is determined by how well the project team achieves these objectives.  

Measurement planning usually begins with a project manager or project stakeholder identifying an information need to support project decision-making.  Data that helps satisfy the defined information need can be obtained by measuring the elements or entities produced within the project.  From an information need, you can then derive the entities that should be measured – this is called the measurable concept.  

Here’s an example of a measurable concept: The project manager is concerned that iteration milestones are slipping and believes that scope creep could be a problem.  Visibility into progress can be identified as an information need.  There are many different factors that can help/hinder progress.  One such area is functional stability.  Functional stability is identified as a measurable.  The measurement construct specifies exactly what will be measured and how the results will satisfy the information need.  For our example, the measurement construct could be “requirements churn.”

The rest of this document identifies the management goals or information needs as well as the measurement concept and measurement construct (what to collect).

The measurement process and terms identified in this document are derived from the Measurement Information Model documented in the international standard ISO/IEC 15939, “Software Measurement Process,” and the guidelines outlined in the “Practical Software Measurement” (PSM).

2. Management Goals and Subgoals

The goal of a measurement program is to provide objective data so that the management, development and test teams can make informed decisions based on the information need.   Therefore, a successful measurement program consists of first identifying the information needs.

The following information needs have been identified for the ClassicsCD.com project:

1. In the previous two releases, delivery was late by three to four months.  These schedule problems seem to “creep” up on the project team.  Furthermore, each team manages its own schedule using Microsoft Project and reports its schedule status separately.  The program manager wants to track the schedules more closely so that problems can be identified earlier, rather than near the end of a release.  Information Need: Determine whether tasks for a given release will be completed on time.

2. In the previous two releases, labor cost and expenditures exceeded the planned budget by over 10%.  These figures were not determined until a financial analysis was performed after each release.  To better identify budget problems, the program manager has mandated that each team track the budget using Microsoft Project.  The program manager, as well as the team managers, would like a way to track earned value daily through trend and indicators so that they can pro-act instead of react.  Information Need: Ability to track earned value through trends and indicators.

3. It was determined that the likely cause of schedule slippage and budget overrun was largely due to scope “creep.”  The feedback received from users resulted in numerous changes to existing requirements an the addition of new requirements.  Information Need:  Ability to track requirements churn or revisions so that the managers can determine the impact.

4. After the first two releases, customers filed a high number of priority defects.  It was speculated that the fact that the development team went through four redesigns of the software contributed to both the schedule slip and compromised software quality.  Information Need: Ability to determine the amount of software rewrite or churn.  Information Need:  Ability to determine whether change requests are being resolved in a timely manner.  Information Need: Ability to assess whether test coverage is adequate and whether tests are being successfully run.

3. Measures

Based on the information needs, we can refine the measures using the following table of Information Category, Measurable Concepts, and Measures:

	Information Category
	Measureable Concepts
	Measures

	Schedule and Progress
	Work Unit Progress
	Tasks Complete

Late Tasks

Requirements Status

Use Case Status

Change Request Status

Change Requests by Priority

Test Case Status

	Resource and Cost
	Financial Performance
	Earned Value Progress

SPI

CPI

Schedule Variance

Cost Variance

Work Hours

	Product Size and Stability
	Physical Size and Stability
	Code Churn (Number of Lines Added, Modified, and Deleted)



	
	Functional Size
	Requirements

Requirements Churn (Revisions)

Use Cases

Use Case Steps

	Product Quality
	Functional Correctness
	Defects by Severity

Age of Defects


These are the minimum set of measures that will be tracked on the ClassicsCD.com project.

3.1 Schedule and Progress Measures

3.1.1 Project Tasks Complete

	Information Need
	Determine whether planned tasks are completed in a progressive manner.

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of Number of Tasks Complete

	Goals
	The goal of this measure is to ensure that tasks are being progressively being completed.

	Decision Criteria
	This measure is used to track the number of tasks completed in a given milestone.  The number of tasks completed should approach zero the closer you get to the milestone.  This shows that progress is being achieved.

	Derived Measure
	Number of Tasks Complete

	Measurement Function
	The number of tasks completed is derived from the Microsoft Project Collection.  A task is considered to be complete if the Actual Finish date is set.

	Base Measure
	Number of Tasks.

	Attributes
	Actual Finish date.

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attribute, Actual Finish, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.  A data transformation will then be automatically executed by ProjectConsole to determine for each collected task whether the Actual Finish date is set.  If it is set, then the task is considered complete.


3.1.2 Late Tasks

	Information Need
	Determine whether planned tasks for a given release will be completed on-time.

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of number of late tasks

	Goals
	The goal of this measure is to ensure that tasks are being completed in a timely manner.

	Decision Criteria
	This measure can be used to track the number of tasks completed in a given milestone.  The number of tasks completed should approach zero the closer you get to the milestone.  This shows that progress is being achieved.

	Derived Measure
	Number of Late Tasks

	Measurement Function
	The number of late tasks will be derived from a collection from Microsoft Project.  A task is determined to be late if the Actual Finish date is not set and the current date is greater than the Baseline Finish date.  If the Actual Finish date is set, then task is late if the Actual Finish date falls after the Baseline Finish date.

	Base Measure
	Number of Tasks

	Attributes
	Actual Finish Date

Baseline Finish Date

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measure and base attributes, Actual Finish and Baseline Finish dates, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.  A data transformation will then be automatically executed by ProjectConsole to determine for each task whether the task is late (defined above).  


3.1.3 Requirements Status

	Information Need
	Determine the progress of requirements definition

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of Requirement Status

	Goals
	The goal of this measure to ensure that requirements development or definition is progressing in a timely manner.

	Decision Criteria
	For the ClassicsCD.com project, requirements progress through various stages (or status).  These stages are: Proposed, Approved, Incorporated, and Validated.  As you near a milestone, the number of requirements should be in a certain state.  For example, at the end of inception, you would expect all requirements should be in the Approved state.  Otherwise, the inception phase is not complete.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Number of Requirements by Status

	Attributes
	Requirement Status

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attribute, requirement status, from Rational RequisitePro.  It is the responsibility of the project team to ensure that the RequisitePro project is kept up-to-date.  


3.1.4 Use Case Status

	Information Need
	Determine the progress of use case definition

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of Use Case Status

	Goals
	The goal of this measure to ensure that use case development or definition is progressing in a timely manner.

	Decision Criteria
	For the ClassicsCD.com project, use cases progress through various stages (or status).  These stages are: Proposed, Approved, Incorporated, and Validated.  As you near a milestone, the number of use cases should be in a certain state.  For example, at the end of elaboration, you would expect all use cases should be in the Approved state.  Otherwise, the elaboration phase is not complete.

	Derived Measure
	N/A

	Measurement Function
	N/A 

	Base Measure
	Number of Use Cases by Status

	Attributes
	Use Case Status

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attribute, use case status, from Rational RequisitePro.  It is the responsibility of the project team to ensure that the RequisitePro project is kept up-to-date.  


3.1.5 Change Request Status

	Information Need
	Determine the progress of change request resolution

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of Number of Change Requests by Status

	Goals
	The goal of this measure to ensure that change request resolution is progressing in a timely manner.

	Decision Criteria
	For the ClassicsCD.com project, change request resolution progress through various stages (or status).  These stages are: Submitted, Assigned, Open, Resolved, and Closed  As you near a milestone, the number of change requests you plan to close should reach a targeted number.  Or another way to look at this is the number of open change requests should approach 0.

	Derived Measure
	Number of Change Requests by Status

	Measurement Function
	N/A

	Base Measure
	Number of Change Requests by Status

	Attribute
	Change Request Status

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attribute, change request status, from Rational ClearQuest.  It is the responsibility of the project manager to ensure that the ClearQuest change request process is followed on the project and the ClearQuest database is updated by developers and testers to reflect change requests being resolved and closed.


3.1.6 Change Requests by Priority

	Information Need
	Evaluate product release readiness by tracking the number of change requests by resolved by priority

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of Number of Change Requests by Priority

	Goal
	The goal of this measure is to determine release readiness by tracking the progress of change requests resolved by priority.  Particular attention is given to Priority 1 and 2 change requests.

	Decision Criteria
	This measure is used to track progress.  High priority change requests are those defects and enhancement requests that are must be included in a release.  As the release or milestone approaches, the number of high priority change requests still open should decrease while the number of change requests closed should increase.

Change Requests can be classified by the following priority values:

Priority 1 – Resolve Immediately

Priority 2 – Give High Attention

Priority 3 – Normal Queue

Priority 4 –  Low

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Number of Change Requests  by Priority

	Attribute
	Change Request Status

Change Request Priority

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of defects as well as the attributes, Status and Priority,  from Rational ClearQuest.  It is the responsibility of the project manager to ensure that the change request process is followed on the project and that the ClearQuest database is updated by developers and testers to reflect change requests being resolved and closed.


3.1.7 Test Case Status

	Information Need
	Determine the progress of test case execution

	Information Category
	Schedule and Progress

	Measurable Concept
	Work Unit Progress

	Indicator
	Trend of Test Cases Planned, Executed, Passed, and Failed

	Goals
	The goal of this measure to ensure that test case planning and execution is progressing in a timely manner.

	Decision Criteria
	For the ClassicsCD.com project, test cases are planned and then executed.  The number of test cases executed that passed and failed are then tracked.  As you near the end of a milestone, the number of test cases passed should approach the number of test cases planned and executed.  The number of test cases failed should approach 0.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Number of Test Cases Planned, Executed, Passed, Failed

	Attributes
	Test Case Planned

Test Case Executed

Test Case Result

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures,  number of test cases planned, executed, passed, and failed, from Rational TestManager.  It is the responsibility of the project team to ensure that the test cases are executed so that the TestManager database is up-to-date.  


3.2 Resource and Cost Measures

3.2.1 Earned Value versus Budget Cost

	Information Need
	Determine how far along the project is in the development – the amount of work completed.

	Information Category
	Resources and Cost

	Measurable Concept
	Financial Performance

	Indicator
	Trend of Earned Value (BCWP versus Budgeted Cost)

	Goals
	The goal of this measure is to show the progress of development in terms of the amount of work performed versus the budgeted cost.

	Decision Criteria
	As the project progresses and work is completed, the amount of work is measured in earned value or budgeted cost of work performed (BCWP) .  This value can then be compared with the budgeted cost to determine how far along the project is in the development.  As the project progresses, the earned value or BCWP should approach the budgeted cost.

	Derived Measures
	N/A

	Measurement Function
	N/A

	Base Measure
	BCWP

Budgeted Cost

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attributes, BCWP and the budgeted cost, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.   


3.2.2 Work Hours

	Information Need
	Determine how far along the project is in the development – the amount of work hours performed.

	Information Category
	Resources and Cost

	Measurable Concept
	Financial Performance

	Indicator
	Trend of Actual Work Hours versus Planned Work Hours

	Goals
	The goal of this measure is to show the progress of development in terms of the amount of work hours performed versus the planned work hours.

	Decision Criteria
	As the project progresses and work is completed, the amount of work is measured in work hours.  This value can then be compared to the planned work hours to determine how far along the project is in the development.  As the project progresses, the actual work hours performed should approach the planned work hours.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measures
	Actual Work Hours 

Planned Work Hours

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attributes, actual work hours and planned work hours, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.   


3.2.3 Schedule Performance Index (SPI)

	Information Need
	Determine whether the project will complete scheduled activities on time.

	Information Category
	Resources and Cost

	Measurable Concept
	Financial Performance

	Indicators
	Trend of SPI

1. Gauge showing current  SPI

	Goals
	The goal of this measure is to give the project manager an indication of whether the project is currently ahead of schedule or behind schedule.

	Decision Criteria
	The value of SPI should stay close to 1.  If the value falls below 1, then the project or activity is behind schedule.  If the value is above 1, then the project or activity is ahead of schedule.  The measure can be shown in a chart to show progress as well as in a gauge indicator to show the current value.

For the Gauge, the threshold values are:

1. SPI value under 0.7 is red.

2. SPI value between 0.7 and 1.0 is yellow.

3. SPI value 1.0 and above is green

	Derived Measure
	Schedule Performance Index (SPI)

	Measurement Function
	SPI can be used to determine at a glance whether a project is ahead of schedule or behind schedule.  SPI is a computed value:

   SPI = (BCWP – BCWS)/BCWS

	Base Measures
	BCWP

BCWS

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attributes, BCWP and BCWS, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.   A data transformation will then be automatically executed by ProjectConsole to determine for each collected task, the value of SPI.   To determine the SPI for the entire project, you can view the SPI for the top-level task (setting a filter).


3.2.4 Cost Performance Index (CPI)

	Information Need
	Determine whether the project will complete scheduled activities within cost.

	Information Category
	Resources and Cost

	Measurable Concept
	Financial Performance

	Indicators
	Trend of CPI

1. Gauge showing current CPI

	Goals
	The goal of this measure is to give the project manager an indication of whether the project is currently spending more than the budgeted cost or less than the budgeted cost.

	Decision Criteria
	The value of CPI should stay close to 1.  If the value falls below 1, then the project is spending more than what was budgeted.  If the value is above 1, then the project is spending less than the amount budgeted.  The measure can be shown in a chart to show progress as well as in a gauge or stop-light indicator to show the current value.

For the Gauge, the threshold values are:

1. CPI value under 0.7 is red.

2. CPI value between 0.7 and 1.0 is yellow.

3. CPI value 1.0 and above is green

	Derived Measure
	CPI

	Measurement Function
	CPI can be used to determine at a glance whether a project is spending more or less than was budgeted to complete the scheduled activities.  CPI is a computed value:

   CPI = (BCWP – ACWP)/ACWP

	Base Measures
	BCWP

ACWP

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attributes, BCWP and BCWS, and ACWP, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.   A data transformation will then be automatically executed by ProjectConsole to determine for each collected task, the value of CPI.   To determine the CPI for the entire project, you can view the CPI for the top-level task (setting a filter).


3.2.5 Schedule Variance (SV)

	Information Need
	Determine whether the value the work actually done is more or less than planned.

	Information Category
	Resources and Cost

	Measurable Concept
	Financial Performance

	Indicator
	Trend of Schedule Variance (SV)

	Goals
	The goal of this measure is to give the project manager an indication of whether the value of work done is either more or less than what was planned.

	Decision Criteria
	The value of SV should stay close to 0.  If the value falls below 0 (negative), then the value of the work actually done is less than planned and you are behind schedule.  If the value is above 0 (positive), then the value of the work actually done is more than expected and you are ahead of schedule.  The measure can be shown in a chart to show progress as well as in a gauge or stop-light indicator to show the current value.

	Derived Measure
	SV

	Definition
	SV can be used to determine at a glance the value of work actually done is either more or less than what was planned.  SV is a computed value:

   SV = BCWP – BCWS

	Base Measures
	BCWP

BCWS

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attributes, BCWP and BCWS, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.   A data transformation will then be automatically executed by ProjectConsole to determine for each collected task, the value of SV.   To determine the SV for the entire project, you can view the SV for the top-level task (setting a filter).


3.2.6 Cost Variance (CV)

	Information Need
	Determine whether the project is more or less than expected to get the work done.

	Information Category
	Resources and Cost

	Measurable Concept
	Financial Performance

	Indicator
	Trend of Cost Variance (CV)

	Goals
	The goal of this measure is to give the project manager an indication of whether the value of work done is either more or less than what was planned.

	Decision Criteria
	The value of CV should stay close to 0.  If the value falls below 0 (negative), you have spent more than you expected to get the work done - cost-overrun.  If the value is above 0 (positive), you have spent less than expected to get the work done – you are ahead of budget.  The measure can be shown in a chart to show progress as well as in a gauge or stop-light indicator to show the current value.

	Derived Measure
	CV

	Measurement Function
	CV can be used to determine at a glance the value of work actually done is either more or less than what was planned.  SV is a computed value:

   CV = BCWP – ACWP

	Base Measures
	BCWP

ACWP

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base attributes, BCWP and BCWS, from Microsoft Project 2000.  It is the responsibility of the project manager to ensure that the MS Project plan is kept up-to-date.   A data transformation will then be automatically executed by ProjectConsole to determine for each collected task, the value of CV.   To determine the CV for the entire project, you can view the CV for the top-level task (setting a filter).


3.3 Product Size and Stability Measures

3.3.1 Lines Added, Modified, and Deleted

	Information Need
	Determine the stability of the software for release readiness.

	Information Category
	Product Size and Stability

	Measurable Concept
	Physical Size and Stability

	Indicator
	Trend of Code Churn (Lines Added, Modified, Deleted)

	Goals
	The goal of this measure is to show the stability of the configured software elements.   

	Decision Criteria
	This measure is used to track the stability of the configured software element.  As a milestone is nearing completion, the number of lines added, modified, and deleted, should approach zero.  This shows that no more changes are being applied to the configured elements and the software is stable – one of the criteria used for determining milestone completion.

	Measure
	Code Churn

	Definition
	The code churn measure shows the number of lines added, modified, and deleted and is derived from data collected from Rational ClearCase. 

	Base Measure
	Lines Added

Lines Modified

Lines Deleted

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of lines added, modified, and deleted from Rational ClearCase.  It is the responsibility of the project manager to ensure that all software elements you wish to track are configured using ClearCase and the change management process for software development is followed


3.3.2 Requirements

	Information Need
	Determine the number of requirements and sub-requirements for the project

	Information Category
	Product Size and Stability

	Measurable Concept
	Functional Size and Stability

	Indicator
	Trend of Number of Level 0 and 1 Requirements

	Goals
	The goal of this measure is to track the size and complexity of the project.   

	Decision Criteria
	This measure is used to track the size and complexity of the project.  The measure can also be used to track the stability of requirements definition.  The number of level 0 and 1 requirements should stabilize over time.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Number of Requirements

	Attributes
	Requirement Level Number

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of requirements and the attribute, ‘Level’, from Rational RequisitePro.  It is the responsibility of the project manager to ensure that all requirements are properly managed using RequisitePro.


3.3.3 Requirements Churn (Revisions)

	Information Need
	Determine the stability of the software requirements for release readiness.

	Information Category
	Product Size and Stability

	Measurable Concept
	Functional Size and Stability

	Indicator
	Trend of Requirements Churn (Revisions)

	Goals
	The goal of this measure is to show the stability of the requirements.  This measure can be used to determine whether a milestone is complete.  It can also be used to determine the quality.  Instability of requirements is usually the sign of requirements ‘creep’, which can lead to schedule slippage as well as cost overruns.

	Decision Criteria
	This measure is used to track the stability of the requirements.  As a milestone is nearing completion, the number of requirements revised should approach zero.  This shows that no more changes to requirements are being applied to the configured elements and the requirement definitions are stable – one of the criteria used for determining milestone completion.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measures
	Number of Requirements Revisions

	Attributes
	Revision Date

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of requirement revisions from Rational RequisitePro.  It is the responsibility of the project manager to ensure that all requirements are managed using RequisitePro.


3.3.4 Use Cases

	Information Need
	Determine the number of use cases for the project

	Information Category
	Product Size and Stability

	Measurable Concept
	Functional Size and Stability

	Indicator
	Trend of Number of Use Cases

	Decision Criteria
	This measure is used to track the size and complexity of the project by tracking the number of use cases.  The measure can also be used to track the stability of use case definition.  The number of use cases should stabilize over time.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Number of Use Cases   

	Attribute 
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of use cases from Rational RequisitePro.  It is the responsibility of the project manager to ensure that all use case definitions are properly managed using RequisitePro.


3.3.5 Use Case Steps

	Information Need
	Determine the number of use case steps for the project

	Information Category
	Product Size and Stability

	Measurable Concept
	Functional Size and Stability

	Indicator
	Trend of Use Case Steps

	Goals
	The goal of this measure is to track the size and complexity of the project.   

	Decision Criteria
	This measure is used to track the size and complexity of the project by tracking the number of use case steps.  The measure can be used to also track the stability of use case definition.  The number of use case steps should stabilize over time.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Number of Use Case Steps

	Attributes
	

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of use case steps from Rational RequisitePro.  It is the responsibility of the project manager to ensure that all use case definitions are properly managed using RequisitePro.


3.4 Product Quality Measures

3.4.1 Defects by Severity

	Information Need
	Evaluate product quality and release readiness by the number of open defects by severity for the project

	Information Category
	Product Quality

	Measurable Concept
	Functional Correctness

	Indicator
	Trend of Open Defects by Severity

	Goals
	The goal of this measure is to track the quality of software delivered.

	Decision Criteria
	This measure is used to track the quality of the project by tracking defects by severity.  High severity defects makes the product unusable or hard to use.  The measure can be used to also track the resolution progress for defects by severity.  As the release or milestone approaches, the number of defects still open should decrease while the number of defects closed should increase.

Defects can be classified by severity:

Severity 1 – Critical, showstopper defect.  The defect makes the product unusable.

Severity 2 – Major defect.  Workaround may exist but it’s undesireble.

Severity 3 – Average defect. Can continue to work.  Workaround exists.

Severity 4 – Minor defect.  Cosmetic flaw.

	Derived Measure
	N/A

	Measurement Function
	N/A

	Base Measure
	Open Defects

	Attributes 
	Defect Severity

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of defects as well as the attributes, State and Severity, from Rational ClearQuest.  It is the responsibility of the project manager to ensure that all the change request process is followed on the project and that the ClearQuest database is updated by developers and testers to reflect defects being resolved and closed.


3.4.2 Age of Defects

	Information Need
	Evaluate product quality by tracking the age of all open defects

	Information Category
	Product Quality

	Measurable Concept
	Functional Correctness

	Indicator
	Distribution Chart of Open Defects by Number of Days Open

	Goals
	The goal of this measure is to track the quality of software delivered

	Decision Criteria
	This measure is used to track the quality of the project by tracking how long defects have been open.   A high number of defects open for a long amount of time signify that the quality of the software is low and the maintainability and supportability of the software is increasing.

	Derived Measure
	Defects by Days Open

	Measurement Function
	A transformation will be performed which will determine for each open defect the number of days it has been open.  The transformation will then assign an attribute (Days Open) value depending on how long the defect has been open.  The possible attribute values for Days Open are:

1: <= 15 Days

2: 15-30 Days

3: 31-45 Days

4: 46-60 Days

5: 61-90 Days

6: 91+ Days

The transformation will calculate the number of days open by subtracting the submit date day number from the current (collected) date day number.

A defect is defined to be open if it is not in the Close state (either in the Submitted, Assigned, Open or Resolved state).  The number of days a defect has been open is the difference between the Submit date and the current collection date.

	Base Measure
	Number of Defects

	Attributes 
	Defect Submit Date

Defect State

	Responsibilities
	Rational ProjectConsole will be used to automatically collect the base measures, number of defects as well as the attributes, the Submit Date, State and Severity, from Rational ClearQuest.  ProjectConsole will then automatically perform a data transformation to determine the number of days the defect has been open.  It is the responsibility of the project manager to ensure that all the change request process is followed on the project and that developers and testers updated the ClearQuest database to reflect defects being resolved and closed.


4. Primitive Measures

This section outlines the source template definitions that are required in order to collect the identified measures using Rational ProjectConsole.

4.1 Template for a Microsoft Project Measures

	Measure Names
	Tasks Complete, Late Tasks, Earned Value Progress, SPI, CPI, Schedule Variance, Cost Variance, Work Hours

	Definition
	Collects the number of tasks as well as earned value, and work hours.  With this collection, you can also derive additional measures – SPI, CPI, Schedule Variance, and Cost Variance.

	Collection procedure
	Task information is collected from Microsoft Project using ProjectConsole.  The following task attributes (ProjectConsole Source Template definition) will be collected for filtering and drill-down analysis:

· Task.Name

· Task.ID

· Task.Level

· Task.Milestone

· Task.ActualStart

· Task.ActualFinish

· Task.BaselineStart

· Task.BaselineFinish

· Task.Start

· Task.Finish

· Task.ACWP

· Task.BCWS

· Task.BCWP

· Task.OutlineLevel

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.2 Template for Defect Measures

	Measure Names
	Number of Defects, Age of Defects

	Definition
	Collects the number of defect records.  With this collection, you can also derive the age of defects.

	Collection procedure
	Defect information is collected from ClearQuest using ProjectConsole.  The following task attributes (ProjectConsole Source Template definition) will be collected for filtering and drill-down analysis:

· ArtifactType

· Defect.State

· Defect.Priority

· Defect.ID

· Defect.Severity

· Defect.Owner.Login_name

· Defect.Submitdate

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.3 Template for Enhancement Request Measures

	Name
	Number of Enhancement Requests

	Definition
	Collections the number of enhancement request records.

	Collection procedure
	Enhancement request information is collected from ClearQuest using ProjectConsole.  The following task attributes will be collected for filtering and drill-down analysis:

· ArtifactType

· EnhancementRequest.State

· EnhancementRequest.Priority

· EnhancementRequest.ID

· EnhancementRequest.Severity

· EnhancementRequest.Owner.Login_name

· EnhancementRequest.Submitdate

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.4 Template for Feature Requirement Measures

	Name
	Number of Feature Requirements 

	Definition
	Collects the number of Feature requirements.

	Collection procedure
	Feature requirement information is collected from Rational RequisitePro using ProjectConsole.  The following task attributes will be collected for filtering and drill-down analysis:

· FEATRequirement.Name

· FEATRequirement.UniqueID

· FEATRequirement.FullTag

· FEATRequirement.Status

· FEATRequirement.Priority

· FEATRequirement.Level

· FEATRequirement.Iteration

· FEATRequirement. HasParent

· FEATRequirement.HasChildren

· FEATRequirement.Assigned To

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.5 Template for Use Case Requirement Measures

	Name
	Number of Use Case Requirements 

	Definition
	Collects the number of use cases.

	Collection procedure
	Use case requirement information is collected from Rational RequisitePro using ProjectConsole.  The following task attributes will be collected for filtering and drill-down analysis:

· UCRequirement.Name

· UCRequirement.UniqueID

· UCRequirement.FullTag

· UCRequirement.Status

· UCRequirement.Priority

· UCRequirement.Level

· UCRequirement.Iteration

· UCRequirement. HasParent

· UCRequirement.HasChildren

· UCRequirement.Assigned To

· UCRequirement.Affects Architecture

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.6 Template for Requirements Churn Measure

	Name
	Feature requirements Churn

	Definition
	Collects the number of Feature requirement revisions or churn. 

	Collection procedure
	Feature Requirement revisions are collected from Rational TestManager using ProjectConsole.  The following task attributes will be collected for filtering and drill-down analysis:

· FEATRequirement.Name

· FEATRequirement.FullTag

· FEATRequirement.Status

· FEATRequirement.Revisions

· FEATRequirement.DateTime

· FEATRequirement.UniqueID

· FEATRequirement.Priority

· FEATRequirement.Level

· FEATRequirement.Iteration

· FEATRequirement. HasParent

· FEATRequirement.HasChildren

· FEATRequirement.Assigned To

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.7 Template for Test Case Executed Measures

	Name
	Test Case Execution Status

	Definition
	Collects the number of test cases executed with actual results as well as interpreted results.  Additional transformation is required.

	Collection procedure
	Test case plan and test case result information is collected from Rational TestManager using ProjectConsole.  The following task attributes will be collected for filtering and drill-down analysis:

· Build.Iteration.Name

· TestCaseResult.TestCaseName

· TestCaseResult.TestCase.Owner

· TestCaseResult.ActualResult

· TestCaseResult.InterpretedResult

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.8 Template for Test Case Planned Measures

	Name
	Test Case Planned Status

	Definition
	Collects the number of test cases planned. 

	Collection procedure
	Test case plan and test case result information is collected from Rational TestManager using ProjectConsole.  The following task attributes will be collected for filtering and drill-down analysis:

· Iteration.Name

· TestCase.Name

· TestCase.Owner

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


4.9 Template for Code Churn Measures

	Name
	Number of lines added, modified, deleted

	Definition
	Collects the number of lines added, modified, and deleted from ClearCase. 

	Collection procedure
	Number of lines added, modified, and deleted are collected from Rational ClearCase using ProjectConsole’s supplied agent.  The agent creates a comma-separated (CSV) text file containing information about ClearCase elements including number of lines added, modified, and deleted.  The following element attributes will be collected from the CSV file for filtering and drill-down analysis:

· Iteration.Name

· TestCase.Name

· TestCase.Owner

	Responsibilities
	[Who is responsible for collecting and verifying the data?]


5. Annexes
5.1 Data Transformations

5.1.1 Task Complete, Late Task

A ProjectConsole transformation is required.  The transformation written in ClearQuest Perl is provided in the following section.

5.1.1.1 UpdateMSProjectData.pl

#/*

# * +------------------------------------------------------------------------------------------+

# * | Copyright 1999, 2002 Rational Software Corporation.  All Rights Reserved.|

# * | This software contains proprietary and confidential information of                |

# * | Rational and its suppliers.  Use, disclosure or reproduction is                         |

# * | prohibited without the prior express written consent of Rational.                    |

# * +-------------------------------------------------------------------------------------------+

# */

############################################################################

#UpdateMSProjectData.pl

#

# This script determines whether a MS Project task complete and "on time" 

# or not and sets the "on time" value in the MS Project measure.  

#

############################################################################

use PjCLib;

use Win32::OLE;

require CQPerlExt;

use constant CURRENCY_SIGN => "\$";

use constant PERCENT_SIGN => "\%";

use constant CURRENCY_DEMARCATOR => "\,";

use constant LEFT_PAREN => "(";

use constant RIGHT_PAREN => ")";

use constant MINUS => "-";

use constant HOUR => " hr";

use constant HOURS => " hrs";

use constant DAY => " day";

use constant DAYS => " days";

use constant NULL_STRING => "";

use constant PROJECT_MEASURE_TABLE => "MSP_Task_Measure";

use constant PROJECT_AGGREGAGE_MEASURE_TABLE => "MSPAggregate_measure";

use constant DBID => "DBID";

use constant YES => "yes";

use constant NO => "no";

use constant BOOL_TRUE => "True";

use constant BOOL_FALSE => "False";

# Temp Fields

#   These fields hold temporary values that need to be transformed into actual values

use constant ACTUAL_COST_STR => "ActualCostStr";

use constant ACTUAL_DURATION_STR => "ActualDurationStr";

use constant ACTUAL_FINISH_DATE_STR => "actualfinish_str_1";

use constant ACTUAL_START_DATE_STR => "actualstart_str_1";

use constant ACTUAL_WORK_STR => "ActualWorkStr";

use constant ACWP_STR => "ACWPStr";

use constant BASELINE_COST_STR => "BaselineCostStr";

use constant BASELINE_DURATION_STR => "BaselineDurationStr";

use constant BASELINE_FINISH_DATE_STR => "baselinefinish_str_1";

use constant BASELINE_START_DATE_STR => "baselinestart_str_1";

use constant CURRENT_PLAN_START_DATE_STR => "curplanstart_str";

use constant CURRENT_PLAN_FINISH_DATE_STR => "curplanfinish_str";

use constant BASELINE_WORK_STR => "BaselineWorkStr";

use constant BCWP_STR => "BCWPStr";

use constant BCWS_STR => "BCWSStr";

use constant COST_STR => "CostStr";

use constant COST_VARIANCE_STR => "CostVarianceStr";

use constant FIXED_COST_STR => "FixedCostStr";

use constant PERCENT_COMPLETE_FK => "PercentCompleteStr";

use constant PERCENT_WORK_COMPLETE_FK => "PercentWorkCompleteStr";

################

# main

################

# global variables

$currentDate; 

$currentTime;

getCurrentDateTime();

print "Start Time = $currentDate $currentTime \n";

$session = logon();

# If you wish to perform the calculation for a certain day, uncomment the

# following line and set it to a day with SQL date format, e.g., "1999-05-07";

#$currentDate = "1999-06-25";

$baselineFinish = "";

$actualFinish = "";

$collInstanceLogID = "";

$finish = "";

myMain();

getCurrentDateTime();

print "End Time = $currentDate $currentTime \n";

exit;

# 

# Initialize the values of the "pseudo constants".

#

sub initialize {

    # Get physical table names.  These names will be used in the query definitions.

    $PROJECT_MEASURE_TABLE = PjCLib->getPhysicalTableDbName("MSP_Task_Measure");

    $PROJECT_AGGREGAGE_MEASURE_TABLE = PjCLib->getPhysicalTableDbName("MSPAggregate_measure");

    $COLLECTIONDATE_TABLE = PjCLib->getPhysicalTableDbName("collectiondate");

    $CALENDARDATE_TABLE = PjCLib->getPhysicalTableDbName("calendardate");

    $PROJECTDATE_TABLE = PjCLib->getPhysicalTableDbName("ProjectDate");

    $ACTUALSTARTDATE_TABLE = PjCLib->getPhysicalTableDbName("ActualStart");

    $ACTUALFINISHDATE_TABLE = PjCLib->getPhysicalTableDbName("ActualFinish");

    $BASELINESTARTDATE_TABLE = PjCLib->getPhysicalTableDbName("BaselineStart");

    $BASELINEFINISHDATE_TABLE = PjCLib->getPhysicalTableDbName("BaselineFinish");

    $CURPLANSTARTDATE_TABLE = PjCLib->getPhysicalTableDbName("curplanstart");

    $CURPLANFINISHDATE_TABLE = PjCLib->getPhysicalTableDbName("curplanfinish");

    $MSP_MILESTONE_DIM = PjCLib->getPhysicalTableDbName("msp_milestone_dim");

    # Get physical field names for the task table.  These names will be used in the query definitions.

    $TASK_NAME = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "taskname_fk");

    $TASK_ID = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "taskid_fk");

    $MEASURE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Number of Tasks");

    $ACTUAL_COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPActualCost");

    $ACTUAL_DURATION = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPActualDuration");

    $ACTUAL_FINISH_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "actualfinish_fk");

    $ACTUAL_START_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "actualstart_fk");

    $ACTUAL_WORK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPActualWork");

    $ACWP = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "ACWP");

    $BASELINE_COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPBaselineCost");

    $BASELINE_DURATION = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPBaselineDuration");

    $BASELINE_FINISH_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "baselinefinish_fk");

    $BASELINE_START_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "baselinestart_fk");

    $CURRENT_PLAN_START_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "curplanstart_fk");

    $CURRENT_PLAN_FINISH_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "curplanfinish_fk");

    $BASELINE_WORK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPBaselineWork");

    $BCWP = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "BCWP");

    $BCWS = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "BCWS");

    $COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Cost_1");

    $COST_VARIANCE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "CostVariance");

    $FIXED_COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "FixedCost_1");

    $PERCENT_COMPLETE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPPercentComplete");

    $PERCENT_WORK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPPercentWorkComplete");

    $TASK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPTaskComplete");

    $ONTIME_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "ontime_fk");

    $MILESTONE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "milestone_fk");

    $COLLECTIONDATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "collectiondate_fk");

    $COLLECTION_INSTANCE_ID = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "coll_instance_log_id");

    # Get physical field names for the aggregate table.  These names will be used in the query definitions.

    $MSP_AGGR_BP_TASK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "MSP Aggr: BP Task Complete");

    $MSP_AGGR_CP_TASK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "MSP Aggr: CP Task Complete");

    $MSP_AGGR_TASK_COMPLETE  = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "MSP Aggr: Task Complete");

    $MSP_AGGR_COLLECTIONDATE_FK = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "collectiondate_fk");

    $MSP_AGGR_CALENDARDATE_FK = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "calendardate_fk");

    $MSP_AGGR_COLLECTION_INSTANCE_ID = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "coll_instance_log_id");

    $MSP_AGGR_PROJECTDATE_FK = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "projectdate_fk");

    # These fields currently not used.

    #$TRANSFORMED = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Transformed");

    #$MILESTONE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Milestone");

    #$MSP_AGGR_MILESTONE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "milestone_fk");

}

sub myMain {

    my $DBID;

    my $costStr;

    my $workStr;

    PjCLib->initializePjCLibrary($session, PjCLib->BOOLEAN_TRUE);

    initialize();

    print "Update ", $PROJECT_MEASURE_TABLE, " collection dated $currentDate.  Please wait...\n";

    #

    # Get measure table results

    #

    my $mainResultSet = buildTempProjTableResultSetRaw();

    #

    # Loop through each table and update the column values

    #

    #print "process eachrow...\n";

    $count = 0;

    while ($mainResultSet->MoveNext() == $CQPerlExt::CQ_SUCCESS) {


$DBID = $mainResultSet->GetColumnValue(1);

        $actualStartStr = $mainResultSet->GetColumnValue(2);

        $actualFinishStr = $mainResultSet->GetColumnValue(3);


$baselineStartStr = $mainResultSet->GetColumnValue(4);


$baselineFinishStr = $mainResultSet->GetColumnValue(5);


$milestoneFk = $mainResultSet->GetColumnValue(6);


$collInstanceLogID = $mainResultSet->GetColumnValue(7);

        updateProjectMeasures($DBID, 

                              $actualStartStr,

                              $actualFinishStr,

                              $baselineStartStr,

                              $baselineFinishStr,

                              );

       $count = $count + 1;

        ####updateTimeTableColumns($costStr);

    }

    print "Updated $count measure rows in table ", $PROJECT_MEASURE_TABLE . "\n";

    ###updateAggregateMeasures();

}

sub buildTempProjTableResultSetRaw {

    #

    # Return a result set containing the names of the time dimension tables

    # using raw SQL command

    #

    #print "buildTempProjTableResultSet started.\n";

    $queryStr = "SELECT " . DBID . "," .

                $ACTUAL_FINISH_DATE_FK . "," .

                ACTUAL_START_DATE_STR . "," .

                ACTUAL_FINISH_DATE_STR . "," .

                BASELINE_START_DATE_STR . "," .

                BASELINE_FINISH_DATE_STR . "," .

                $MILESTONE_FK . "," .

                $COLLECTION_INSTANCE_ID .

                " FROM " . $PROJECT_MEASURE_TABLE .

                " WHERE " . $COLLECTIONDATE_FK . " = (SELECT ". DBID . " FROM " .

                " collectiondate WHERE collectiondate_name = " . "'" . $currentDate . "')";

    #print "Excute query $queryStr...\n";

    my $projResultSet = $session->BuildSQLQuery($queryStr);

    $projResultSet->Execute();

    #print "buildTempProjTableResultSet completed.\n";

    return $projResultSet;

}

sub replace {

    my ($text, $toReplace, $replaceWith,) = @_;

    #print "replace $text, $toReplace, $replaceWith\n";

    # replace all occurances

    my $notDone = 1;

    while($notDone) {

        my $index = index($text, $toReplace);

        if ($index >= 0) {

            substr($text, $index, length($toReplace), $replaceWith);

        } 

        else {

            $notDone = 0;

        }

    }

    #print "transformed to $text\n";

    return $text;

}

sub updateProjectMeasures {

    my ($DBID, 

        $actualStartStr,

        $actualFinishStr,

        $baselineStartStr,

        $baselineFinishStr,

        ) = @_;

    #printf("process $count : DBID $DBID\n");

    $actualStartDateStr = convertMSProjectDate($actualStartStr);

    #printf("actualStartStr    => $actualStartStr transformed to '$actualStartDateStr' \n");

    # set the global var

    $actualFinish = convertMSProjectDate($actualFinishStr);

    #printf("actualFinishStr   => $actualFinishStr transformed to '$actualFinish' \n");

    # Determine task complete measure

    my $taskComplete = "0";

    if (length($actualFinish) != 0) {

       $taskComplete = "1";

    }

    #printf("$DBID taskComplete  = $taskComplete; ");

    # Determine if task is on time

    my $onTime = isOnTime($actualFinishStr, $baselineFinishStr);

    #printf("onTime = $onTime\n");

    #

    # Get the entity for this record.  Note that updates must be made

    # using an entity object.

    #

    my $entity = $session->GetEntityByDbId($PROJECT_MEASURE_TABLE, $DBID);

    #

    # Update the record

    #

    #print "Update record $DBID\n";

    $session->EditEntity($entity,"modify");

    $entity->SetFieldValue($ONTIME_FK, $onTime);

    $entity->SetFieldValue($TASK_COMPLETE, $taskComplete);

    $retVal = $entity->Validate();

    #printf("entity->Validate() return value = $retVal\n");

    $entity->Commit();

    #printf("entity->Commit() return value = $retVal\n");

    #printf("Measure Updated\n");

}

sub isOnTime{

    my ($actualFinishStr, $baselineFinishStr) = @_;

    #printf("isOnTime() executing...\n");

    #printf("  actualFinishStr  = $actualFinishStr\n");

    #printf("  baselineFinishStr = $baselineFinishStr\n");

    if (length($baselineFinishStr) == 0) {

       # baseline finish date is not set so return True

       return BOOL_TRUE;

    } else {

       if (length($actualFinishStr) == 0) {

          # actual start is not set, so check if it's late.  If collectiondate is 

          # after baseline finish, then it's late

          if ($currentDate gt $baselineFinishStr) {

             return BOOL_FALSE;

          } else {

             return BOOL_TRUE;

          }

       } else {

          if ($actualFinishStr gt $baselineFinishStr) {

             return BOOL_FALSE;

          }

       }

    }

    return BOOL_TRUE;

}

sub transformToHours{

    my ($value, $fieldName) = @_;

    my $actualHours = replace($value, HOURS, NULL_STRING);

    $actualHours = replace($actualHours, HOUR, NULL_STRING);

    my $actualHoursInt = 0 + $actualHours;

    my $actualHoursStr = sprintf("%.d", $actualHoursInt);   

    #print " transformed day value $value to $actualHoursStr\n";

    return $actualHoursStr;

}

sub transformToDays{

    my ($value, $fieldName) = @_;

    my $actualDays = replace($value, DAYS, NULL_STRING);

    $actualDays = replace($actualDays, DAY, NULL_STRING);

    my $actualDaysInt = 0 + $actualDays;

    my $actualDaysStr = sprintf("%.d", $actualDaysInt);

    #print " transformed day value $value to $actualDaysStr\n";

    return $actualDaysStr;

}

sub transformPercent {

    my ($percentName, $percentValue) = @_;

    if (length($percentValue) == 0) {

        return 0;

    }

    # Strip off percent sign

    my $percentValueStr = replace($percentValue, PERCENT_SIGN, NULL_STRING);

    my $percentValueInt = $percentValueStr;

    #print "transformPercent(): ", "'; $percentName  ", $percentValue , " tranformed to => ", $percentValueInt, "\n";

    return sprintf($percentValueStr);

}

sub transformCurrencyToCents {

    my ($amountName, $amountStr) = @_;

    # Strip off dollar sign

    my $amountIntStr = replace($amountStr, CURRENCY_SIGN, NULL_STRING);

    # Need to strip out any currency demarcator: e.g., "1,234.00" => "1234.00".  Otherwise,

    # we can't convert it to an integer.

    $amountIntStr = replace($amountIntStr, CURRENCY_DEMARCATOR, NULL_STRING);

    # Need to convert (), which means it is a negative amount to "-" minus sign.

    $amountIntStr = replace($amountIntStr, LEFT_PAREN, MINUS);

    $amountIntStr = replace($amountIntStr, RIGHT_PAREN, NULL_STRING);

    my $amountInt = int($amountIntStr);

    #print $DBID, ": ", "'; $amountName value ",$amountStr , "tranformed to => ", $amountInt, "\n";

    return $amountInt;

}

sub updateTaskNameDim {

    my ($taskNameStr) = @_;

    print "Update taskname '", $taskNameStr, "' in the taskname_dim table\n";

    my $query = "select task_name from taskname_dim where dbid <> 0 and task_name = '" . $taskNameStr . "'";

    print "Query => ", $query , "\n";

    my $resultSet = $session->BuildSQLQuery($query);

    $resultSet->Execute();

    $status = $resultSet->MoveNext();

    #print "CQ_SUCCESS       =>  ", $CQPerlExt::CQ_SUCCESS , "\n";

    #print "CQ_NO_DATA_FOUND =>  ", $CQPerlExt::CQ_NO_DATA_FOUND , "\n";

    #print "Status =>  ", $status , "\n";

    if ($status == $CQPerlExt::CQ_NO_DATA_FOUND) {

        my $taskNameEntity = $session->BuildEntity("taskname_dim");

        $taskNameEntity->SetFieldValue("task_name", $taskNameStr);

        $taskNameEntity->Validate();

        $taskNameEntity->Commit();

        #printf("taskname_dim table updated\n");

    }

}

# get date and set the global variables $currentDate and $currentTime

sub getCurrentDateTime {

    my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

    $mon = $mon + 1;

    $year = $year + 1900;

    if ($mday<10) {$mday="0$mday"; }  # add leading 0

    if ($mon<10) {$mon="0$mon"; }     # add leading 0

    # set the global variable $currentDate

    $currentDate="$year-$mon-$mday";

    # set the global variable $currentTime

    $currentTime = $hour . ":" . $min . ":" . $sec;

}

# MS Project date format is something like "Fri 2/19/99";

# This will convert the date to "1999-02-19";

sub convertMSProjectDate {

    ($_) = @_;

    if ($_ == "NA") {

      return "";

    }

    # remove spaces and useless day

    #$_ = $temp;

    s/^\s+//;  # kill leading spaces

    s/^(?:Sun|Mon|Tue|Wed|Thu|Fri|Sat)[a-z]*,?\s*//i; # kill useless weekday

    #printf("converting ". $_ . "\n");

    @array = split(/\//, $_);

    my ($mon,$day,$yr) = @array;

    if ($yr < 100) {

      $yr += 1900;

    }

    my $newDate = sprintf("%04d-%02d-%02d", $yr, $mon, $day);  # add leading 0 on month and day

    return $newDate;

}

sub zeroPad {

    my ($n,$Str) = @_;

    #

    # Simple routine to add leading zeros to a string

    #

    while (length($Str) < $n) { $Str = "0".$Str; }

    return $Str;

}

sub logon {

    #

    # Use the internal DashboardSystem login to get access to the Dashboard database

    #

    my $session = Win32::OLE->new('CLEARQUEST.SESSION');

    my $session = CQPerlExt::CQSession_Build();  

    $session->UserLogon("dashboardsystem", "dashboardsystem", "tstd1", "Dashboard");

    return $session;

}

#

# Return the DBID of the specified field value from specified table.

#

sub getDBID {

    my ($tableName, $fieldName, $fieldValue) = @_;

    my $DBID = "0";

    #if (length($fieldValue) == 0) {

    #    return $DBID";

    #}

    #print "buildTempProjTableResultSet started.\n";

    my $queryStr = "SELECT DBID FROM $tableName" .

                " WHERE $fieldName = '$fieldValue'";

    #print "getDBID(): Execute query $queryStr\n";

    my $resultSet = $session->BuildSQLQuery($queryStr);

    $resultSet->Execute();

    while ($resultSet->MoveNext() == $CQPerlExt::CQ_SUCCESS) {


$DBID = $resultSet->GetColumnValue(1);

    }

    return $DBID;

}

5.1.2 SPI, CPI, Cost Variance, Schedule Variance

A ProjectConsole transformation is required.  The transformation written in ClearQuest Perl is provided in the following section.

5.1.2.1 UpdateMSPEarnedValue.pl

#/*

# * +-------------------------------------------------------------------------------------------+

# * | Copyright 1999, 2002 Rational Software Corporation.  All Rights Reserved.|

# * | This software contains proprietary and confidential information of                |

# * | Rational and its suppliers.  Use, disclosure or reproduction is                         |

# * | prohibited without the prior express written consent of Rational.                    |

# * +-------------------------------------------------------------------------------------------+

# */

############################################################################

#UpdateMSPEarnedValue.pl

#

# This script derives the SPI, CPI, Cost Variance, and Schedule Variance measures 

# after an MS Project collection is run.

#

############################################################################

use PjCLib;

use Win32::OLE;

require CQPerlExt;

use constant CURRENCY_SIGN => "\$";

use constant PERCENT_SIGN => "\%";

use constant CURRENCY_DEMARCATOR => "\,";

use constant LEFT_PAREN => "(";

use constant RIGHT_PAREN => ")";

use constant MINUS => "-";

use constant HOUR => " hr";

use constant HOURS => " hrs";

use constant DAY => " day";

use constant DAYS => " days";

use constant NULL_STRING => "";

use constant PROJECT_MEASURE_TABLE => "MSP_Task_Measure";

use constant PROJECT_AGGREGAGE_MEASURE_TABLE => "MSPAggregate_measure";

use constant DBID => "DBID";

use constant YES => "yes";

use constant NO => "no";

use constant BOOL_TRUE => "True";

use constant BOOL_FALSE => "False";

# Temp Fields

#   These fields hold temporary values that need to be transformed into actual values

use constant ACTUAL_COST_STR => "ActualCostStr";

use constant ACTUAL_DURATION_STR => "ActualDurationStr";

use constant ACTUAL_FINISH_DATE_STR => "actualfinish_str_1";

use constant ACTUAL_START_DATE_STR => "actualstart_str_1";

use constant ACTUAL_WORK_STR => "ActualWorkStr";

use constant ACWP_STR => "ACWPStr";

use constant BASELINE_COST_STR => "BaselineCostStr";

use constant BASELINE_DURATION_STR => "BaselineDurationStr";

use constant BASELINE_FINISH_DATE_STR => "baselinefinish_str_1";

use constant BASELINE_START_DATE_STR => "baselinestart_str_1";

use constant CURRENT_PLAN_START_DATE_STR => "curplanstart_str";

use constant CURRENT_PLAN_FINISH_DATE_STR => "curplanfinish_str";

use constant BASELINE_WORK_STR => "BaselineWorkStr";

use constant BCWP_STR => "BCWPStr";

use constant BCWS_STR => "BCWSStr";

use constant COST_STR => "CostStr";

use constant COST_VARIANCE_STR => "CostVarianceStr";

use constant FIXED_COST_STR => "FixedCostStr";

use constant PERCENT_COMPLETE_FK => "PercentCompleteStr";

use constant PERCENT_WORK_COMPLETE_FK => "PercentWorkCompleteStr";

use constant DBM_TABLE => "dbm_table";

use constant LAST_UPDATED => "last_updated";

use constant DEFAULT_DISPLAY_NAME => "default_display_name_1";

################

# main

################

# global variables

$currentDate; 

$currentTime;

getCurrentDateTime();

print "Start Time = $currentDate $currentTime \n";

$session = logon();

# If you wish to perform the calculation for a certain day, uncomment the

# following line and set it to a day with SQL date format, e.g., "1999-05-07";

#$currentDate = "1999-06-25";

$baselineFinish = "";

$actualFinish = "";

$collInstanceLogID = "";

$finish = "";

myMain();

getCurrentDateTime();

print "End Time = $currentDate $currentTime \n";

exit;

# 

# Initialize the values of the "pseudo constants".

#

sub initialize {

    # Get physical table names.  These names will be used in the query definitions.

    $PROJECT_MEASURE_TABLE = PjCLib->getPhysicalTableDbName("MSP_Task_Measure");

    $PROJECT_AGGREGAGE_MEASURE_TABLE = PjCLib->getPhysicalTableDbName("MSPAggregate_measure");

    $COLLECTIONDATE_TABLE = PjCLib->getPhysicalTableDbName("collectiondate");

    $CALENDARDATE_TABLE = PjCLib->getPhysicalTableDbName("calendardate");

    $PROJECTDATE_TABLE = PjCLib->getPhysicalTableDbName("ProjectDate");

    $ACTUALSTARTDATE_TABLE = PjCLib->getPhysicalTableDbName("ActualStart");

    $ACTUALFINISHDATE_TABLE = PjCLib->getPhysicalTableDbName("ActualFinish");

    $BASELINESTARTDATE_TABLE = PjCLib->getPhysicalTableDbName("BaselineStart");

    $BASELINEFINISHDATE_TABLE = PjCLib->getPhysicalTableDbName("BaselineFinish");

    $CURPLANSTARTDATE_TABLE = PjCLib->getPhysicalTableDbName("curplanstart");

    $CURPLANFINISHDATE_TABLE = PjCLib->getPhysicalTableDbName("curplanfinish");

    $MSP_MILESTONE_DIM = PjCLib->getPhysicalTableDbName("msp_milestone_dim");

    $MSP_EARNEDVALUE_MEASURE_TABLE = PjCLib->getPhysicalTableDbName("MSP_EarnedValue_Measure");

    # MSP Project Name dim table and field

    $PROJECTNAME_TABLE = PjCLib->getPhysicalTableDbName("mspprojectname_dim");

    $PROJECTNAME_FIELD = PjCLib->getPhysicalFieldDbName("mspprojectname_dim", "projectname");

    # Get physical field names for the task table.  These names will be used in the query definitions.

    $PROJECTNAME_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "projectname_fk");

    $TASK_NAME = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "taskname_fk");

    $TASK_ID = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "taskid_fk");

    $MEASURE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Number of Tasks");

    $ACTUAL_COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPActualCost");

    $ACTUAL_DURATION = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPActualDuration");

    $ACTUAL_FINISH_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "actualfinish_fk");

    $ACTUAL_START_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "actualstart_fk");

    $ACTUAL_WORK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPActualWork");

    $ACWP = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "ACWP");

    $BASELINE_COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPBaselineCost");

    $BASELINE_DURATION = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPBaselineDuration");

    $BASELINE_FINISH_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "baselinefinish_fk");

    $BASELINE_START_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "baselinestart_fk");

    $CURRENT_PLAN_START_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "curplanstart_fk");

    $CURRENT_PLAN_FINISH_DATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "curplanfinish_fk");

    $BASELINE_WORK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPBaselineWork");

    $BCWP = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "BCWP");

    $BCWS = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "BCWS");

    $COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Cost_1");

    $COST_VARIANCE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "CostVariance");

    $CPI = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "CPI");

    $SPI = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "SPI");

    $SV = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "SV");

    $CV = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "CV");

    $FIXED_COST = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "FixedCost_1");

    $PERCENT_COMPLETE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPPercentComplete");

    $PERCENT_WORK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPPercentWorkComplete");

    $TASK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "MSPTaskComplete");

    $ONTIME_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "ontime_fk");

    $MILESTONE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "milestone_fk");

    $COLLECTIONDATE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "collectiondate_fk");

    $COLLECTION_INSTANCE_ID = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "coll_instance_log_id");

    # Get physical field names for the aggregate table.  These names will be used in the query definitions.

    $MSP_AGGR_BP_TASK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "MSP Aggr: BP Task Complete");

    $MSP_AGGR_CP_TASK_COMPLETE = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "MSP Aggr: CP Task Complete");

    $MSP_AGGR_TASK_COMPLETE  = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "MSP Aggr: Task Complete");

    $MSP_AGGR_COLLECTIONDATE_FK = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "collectiondate_fk");

    $MSP_AGGR_CALENDARDATE_FK = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "calendardate_fk");

    $MSP_AGGR_COLLECTION_INSTANCE_ID = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "coll_instance_log_id");

    $MSP_AGGR_PROJECTDATE_FK = PjCLib->getPhysicalFieldDbName("MSPAggregate_measure", "projectdate_fk");

    # Get CQ Table and field names

    $CQ_MSP_EARNEDVALUE_MEASURE_TABLE = PjCLib->getCQTableDbName("MSP_EarnedValue_Measure");

    $CQ_PROJECT_ACWP_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "Project ACWP");

    $CQ_PROJECT_BCWP_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "Project BCWP");

    $CQ_PROJECT_BCWS_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "Project BCWS");

    $CQ_PROJECT_CPI_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "Project CPI");

    $CQ_PROJECT_SPI_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "Project SPI");

    $CQ_PROJECTNAME_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "projectname_fk");

    $CQ_COLLECTIONDATE_FIELD = PjCLib->getCQFieldDbName("MSP_EarnedValue_Measure", "collectiondate_fk");

    # These fields currently not used.

    #$TRANSFORMED = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Transformed");

    #$MILESTONE = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "Milestone");

    #$MSP_AGGR_MILESTONE_FK = PjCLib->getPhysicalFieldDbName("MSP_Task_Measure", "milestone_fk");

}

sub myMain {

    my $DBID;

    my $costStr;

    my $workStr;

    PjCLib->initializePjCLibrary($session, PjCLib->BOOLEAN_TRUE);

    initialize();

    print "Update Earned Value Aggregate table. Collection dated $currentDate.  Please wait...\n";

        #

        # Get measure table results

        #

        my $mainResultSet = buildTempProjTableResultSetRaw();

        #

        # Loop through each table and update the column values

        #

        while ($mainResultSet->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

            $DBID = $mainResultSet->GetColumnValue(1);

            $acwp = $mainResultSet->GetColumnValue(2);

            $bcwp = $mainResultSet->GetColumnValue(3);

            $bcws = $mainResultSet->GetColumnValue(4);

            $collInstanceLogID = $mainResultSet->GetColumnValue(5);

            updateProjectMeasures($DBID, 

                                  $acwp,

                                  $bcwp,

                                  $bcws

                                  );

            $count = $count + 1;

        }

        print "Updated $count measure rows in table $PROJECT_MEASURE_TABLE.\n";

    updateLastUpdatedDate();

}

sub buildTempProjTableResultSetRaw {

    #

    # Return a result set containing the names of the time dimension tables

    # using raw SQL command

    #

    #print "buildTempProjTableResultSet started.\n";

                #" WHERE $PROJECT_MEASURE_TABLE.$PROJECTNAME_FK = $projectFK" .

    $queryStr = "SELECT dbid,$ACWP,$BCWP,$BCWS,$COLLECTION_INSTANCE_ID" .

                " FROM $PROJECT_MEASURE_TABLE" .

                " WHERE $COLLECTIONDATE_FK = (SELECT dbid FROM " .

                " collectiondate WHERE collectiondate_name = '$currentDate')";

    print "Execute query $queryStr\n";

    my $projResultSet = $session->BuildSQLQuery($queryStr);

    #print "Call Execute()\n";

    $projResultSet->Execute();

    #print "buildTempProjTableResultSet completed.\n";

    return $projResultSet;

}

sub replace {

    my ($text, $toReplace, $replaceWith,) = @_;

    #print "replace $text, $toReplace, $replaceWith\n";

    # replace all occurances

    my $notDone = 1;

    while($notDone) {

        my $index = index($text, $toReplace);

        if ($index >= 0) {

            substr($text, $index, length($toReplace), $replaceWith);

        } 

        else {

            $notDone = 0;

        }

    }

    #print "transformed to $text\n";

    return $text;

}

sub updateProjectMeasures {

    my ($DBID, 

        $acwp,

        $bcwp,

        $bcws

        ) = @_;

    #printf("ACWP = $acwp \n");

    #printf("BCWP = $bcwp \n");

    #printf("BCWS = $bcws \n\n");

    $sv = $bcwp - $bcws;

    $cv = $bcwp - $acwp;

    if ($acwp > 0.0) {

       $cpi = $bcwp / $acwp;

    } else {

       $cpi = 0.0;

    }

    if ($bcws > 0.0) {

       $spi = $bcwp / $bcws;

    } else {

       $spi = 0.0;

    }

    #printf("CV  = $cv \n");

    #printf("SV  = $sv \n");

    #printf("CPI  = $cpi \n");

    #printf("SPI  = $spi\n");

    #

    # Get the entity for this record.  Note that updates must be made

    # using an entity object.

    #

    my $entity = $session->GetEntityByDbId($PROJECT_MEASURE_TABLE, $DBID);

    #

    # Update the record

    #

    #print "Update record $DBID\n";

    $session->EditEntity($entity,"modify");

    $entity->SetFieldValue($CPI, "$cpi");

    $entity->SetFieldValue($SPI, "$spi");

    $entity->SetFieldValue($CV, "$cv");

    $entity->SetFieldValue($SV, "$sv");

    $retVal = $entity->Validate();

    #printf("entity->Validate() return value = $retVal\n");

    $entity->Commit();

    #printf("entity->Commit() return value = $retVal\n");

    #printf("EV Updated\n");

}

sub updateLastUpdatedDate() {

    print "updateLastUpdatedDate()...\n";

    $queryStr = "SELECT " . DBID .

                " FROM " . DBM_TABLE .

                " WHERE " . DEFAULT_DISPLAY_NAME . " = '". MSP_EARNEDVALUE_MEASURE . "';";

    print "Excute query $queryStr...\n";

    my $projResultSet = $session->BuildSQLQuery($queryStr);

    $projResultSet->Execute();

    #

    #

    #print "process eachrow...\n";

    if ($projResultSet->MoveNext() == $CQPerlExt::CQ_SUCCESS) {


$DBID = $projResultSet->GetColumnValue(1);

        my $entity = $session->GetEntityByDbId(DBM_TABLE, $DBID);

        print "Update record $DBID\n";

        $session->EditEntity($entity,"modify");

        $entity->SetFieldValue(LAST_UPDATED, $currentDate);

        $retVal = $entity->Validate();

        #printf("entity->Validate() return value = $retVal\n");

        $entity->Commit();

        #printf("entity->Commit() return value = $retVal\n");

    }

    print "updateLastUpdatedDate() completed.\n";

}

# get date and set the global variables $currentDate and $currentTime

sub getCurrentDateTime {

    my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

    $mon = $mon + 1;

    $year = $year + 1900;

    if ($mday<10) {$mday="0$mday"; }  # add leading 0

    if ($mon<10) {$mon="0$mon"; }     # add leading 0

    # set the global variable $currentDate

    $currentDate="$year-$mon-$mday";

    # set the global variable $currentTime

    $currentTime = $hour . ":" . $min . ":" . $sec;

}

# MS Project date format is something like "Fri 2/19/99";

# This will convert the date to "1999-02-19";

sub convertMSProjectDate {

    ($_) = @_;

    if ($_ == "NA") {

      return "";

    }

    # remove spaces and useless day

    #$_ = $temp;

    s/^\s+//;  # kill leading spaces

    s/^(?:Sun|Mon|Tue|Wed|Thu|Fri|Sat)[a-z]*,?\s*//i; # kill useless weekday

    #printf("converting ". $_ . "\n");

    @array = split(/\//, $_);

    my ($mon,$day,$yr) = @array;

    if ($yr < 100) {

      $yr += 1900;

    }

    my $newDate = sprintf("%04d-%02d-%02d", $yr, $mon, $day);  # add leading 0 on month and day

    return $newDate;

}

sub zeroPad {

    my ($n,$Str) = @_;

    #

    # Simple routine to add leading zeros to a string

    #

    while (length($Str) < $n) { $Str = "0".$Str; }

    return $Str;

}

sub logon {

    #

    # Use the internal DashboardSystem login to get access to the Dashboard database

    #

    my $session = Win32::OLE->new('CLEARQUEST.SESSION');

    my $session = CQPerlExt::CQSession_Build();  

    $session->UserLogon("dashboardsystem", "dashboardsystem", "tstd1", "Dashboard");

    return $session;

}

#

# Return the DBID of the specified field value from specified table.

#

sub getDBID {

    my ($tableName, $fieldName, $fieldValue) = @_;

    my $DBID = "0";

    #if (length($fieldValue) == 0) {

    #    return $DBID";

    #}

    #print "buildTempProjTableResultSet started.\n";

    my $queryStr = "SELECT DBID FROM $tableName" .

                " WHERE $fieldName = '$fieldValue'";

    #print "getDBID(): Execute query $queryStr\n";

    my $resultSet = $session->BuildSQLQuery($queryStr);

    $resultSet->Execute();

    while ($resultSet->MoveNext() == $CQPerlExt::CQ_SUCCESS) {


$DBID = $resultSet->GetColumnValue(1);

    }

    return $DBID;

}

5.1.3 Age of Defects

A ProjectConsole transformation is required.  The transformation written in ClearQuest Perl is provided in the following section.

This transformation must be executed after collecting ‘Number of Defects’ measures.

5.1.3.1 CalculateDaysOpen.pl

#########################################################################

# calculateDaysOpen.pl

# 

# Description: 

#    This transformation determines the number of days a defect has been

#    opened.

#

#    An "open" defect is defined to be those defects that with state of

#    'Submitted', 'Assigned', 'Open', or 'Resolved'.  If your definition is 

#    different, then you must change the query.

#########################################################################

use PjCLib;

use Win32::OLE;

require CQPerlExt;

################

# main

################

# global variables

$currentDate; 

$currentTime;

getCurrentDateTime();

# Get the ProjectConsole CQ session variable.

$session = logon();

myMain();

exit;

sub myMain {

    # You must always call the initializePjCLibrary() first before

    # you can use the PjCLib.

    PjCLib->initializePjCLibrary($session, PjCLib->BOOLEAN_TRUE);

    ###################################################

    #  Your transformation code goes here

    print "Calculate the number of days change requests have been open since the day they were submitted.\n";

    print "Today's date is $currentDate.\n";

    print "Please wait...\n";

    # First, get the physical names of the PjC tables we wish to query...

    # NOTE: If your table and field names are different, make the appropriate 

    # changes here!  These names are case sensitive!

    $DAYSOPEN_TABLE = PjCLib->getPhysicalTableDbName("DaysOpen_Dim");

    $STATE_TABLE = PjCLib->getPhysicalTableDbName("state_dim");

    $SUBMDATE_TABLE = PjCLib->getPhysicalTableDbName("SubmitDate");

    $DEFECT_TABLE = PjCLib->getPhysicalTableDbName("defect_measure");

    $COLLECTIONDATE_TABLE = PjCLib->getPhysicalTableDbName("collectiondate");

    $DAYSOPEN_FK = PjCLib->getPhysicalFieldDbName("defect_measure", "DaysOpen_fk");

    $COLLECTIONDATE_FK = PjCLib->getPhysicalFieldDbName("defect_measure", "collectiondate_fk");

    $SUBMITDATE_FK = PjCLib->getPhysicalFieldDbName("defect_measure", "SubmitDate_fk");

    $STATE_FK = PjCLib->getPhysicalFieldDbName("defect_measure", "state_fk");

    $DAYSOPEN_FIELD = PjCLib->getPhysicalFieldDbName("DaysOpen_Dim", "Days Open");

    $DAYSOPEN_FIELD = PjCLib->getPhysicalFieldDbName("DaysOpen_Dim", "Days Open");

    $SUBMITDATE_NAME_FIELD = PjCLib->getPhysicalFieldDbName("SubmitDate", "SubmitDate_name");

    $SUBMITDATE_DAYNUM_FIELD = PjCLib->getPhysicalFieldDbName("SubmitDate", "SubmitDate_daynum");

    $COLLECTIONDATE_NAME_FIELD = PjCLib->getPhysicalFieldDbName("collectiondate", "collectiondate_name");

    $STATE_FIELD = PjCLib->getPhysicalFieldDbName("state_dim", "state");

    # Get submitdate_daynum for today's date ($currentDate).  We will subtract the

    # defect's submitdate_daynum to get the number of days open.

    $queryStr = "SELECT $SUBMITDATE_DAYNUM_FIELD FROM $SUBMDATE_TABLE  " .

                "WHERE $SUBMITDATE_NAME_FIELD='$currentDate'";

    #print "Excute query:\n";

    #print "$queryStr...\n";

    my $resultSetObj = $session->BuildSQLQuery($queryStr);

    $resultSetObj->Execute();

    if ($resultSetObj->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

       $currentDayNum = $resultSetObj->GetColumnValue(1);

       #print "currentDayNum = $currentDayNum\n";

    } 

    else {

       print "ERROR: Could not get currentDayNum!\n";

       return;

    }

    #

    # Get dbid and submitdate.submitdate_daynum for each open defect collected today.

    # 

    # Sample query that will be executed looks like the following:

    #   SELECT defect.dbid,submitdate.submitdate_daynum 

    #   FROM defect,submitdate,state_dim

    #   WHERE (defect.collectiondate_fk=(SELECT collectiondate.dbid FROM collectiondate WHERE collectiondate.collectiondate_name='2002-03-19') and

    #   defect.submitdate_fk=submitdate.dbid and 

    #   defect.state_fk in ((select dbid from state_dim where state = 'Opened'),

    #                     (select dbid from state_dim where state = 'Submitted'),

    #                     (select dbid from state_dim where state = 'Assigned'),

    #                     (select dbid from state_dim where state = 'Resolved'))

    #   and defect.state_fk = state_dim.dbid)

    $queryStr = "SELECT $DEFECT_TABLE.dbid,$SUBMDATE_TABLE.$SUBMITDATE_DAYNUM_FIELD " .

                    "FROM $DEFECT_TABLE,$SUBMDATE_TABLE,$STATE_TABLE " .

                    "WHERE ($DEFECT_TABLE.$COLLECTIONDATE_FK= " .

                               " (SELECT $COLLECTIONDATE_TABLE.dbid " .

                               "  FROM $COLLECTIONDATE_TABLE " .

                               "  WHERE $COLLECTIONDATE_TABLE.$COLLECTIONDATE_NAME_FIELD='$currentDate') and " .

                               "    $DEFECT_TABLE.$SUBMITDATE_FK=$SUBMDATE_TABLE.dbid and " .

                               "    $DEFECT_TABLE.$STATE_FK in ".

                                       " ((select dbid from $STATE_TABLE where $STATE_FIELD = 'Opened'), " .

                                       "  (select dbid from $STATE_TABLE where $STATE_FIELD = 'Submitted'), " .

                                       "  (select dbid from $STATE_TABLE where $STATE_FIELD = 'Assigned'), " .

                                       "  (select dbid from $STATE_TABLE where $STATE_FIELD = 'Resolved'))" .

                    "and $DEFECT_TABLE.$STATE_FK = $STATE_TABLE.dbid)";

    #print "Executing query:\n";

    #print "$queryStr\n\n";

    my $resultSetObj = $session->BuildSQLQuery($queryStr);

    $resultSetObj->Execute();

    $count = 0;

    while ($resultSetObj->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

       $dbid = $resultSetObj->GetColumnValue(1);

       $submitdate_daynum = $resultSetObj->GetColumnValue(2);

       # The difference between the submitdate's daynum and the current date's daynum is

       # is the number of days open!

       $numDaysOpen = $currentDayNum - $submitdate_daynum; 

       updateDaysOpen($dbid, $numDaysOpen);

       $count++;

    }

    print "$count Change Request measures were updated.\n";

    #

    ###########################################################

} # end subroutine myMain()

sub updateDaysOpen()

{

    my ($dbid, $daysOpen,) = @_;

    # $daysOpenStr is prefixed by a number so that they show up 

    # sorted on the Dashboard distribution chart.

    if ($daysOpen <= 15) {

        $daysOpenStr = "1: <=15 days";

    } elsif (($daysOpen > 15) && ($daysOpen <= 30)) {

        $daysOpenStr = "2: 16-30 days";

    } elsif (($daysOpen > 30) && ($daysOpen <= 45)) {

        $daysOpenStr = "3: 31-45 days";

    } elsif (($daysOpened > 46) && ($daysOpen <= 60)) {

        $daysOpenStr = "4: 46-60 days";

    } elsif (($daysOpen > 61) && ($daysOpen <= 90)) {

        $daysOpenStr = "5: 61-90 days";

    } elsif (($daysOpen > 91) && ($daysOpen <= 180)) {

        $daysOpenStr = "6: 91-180 days";

    } elsif (($daysOpen > 181) && ($daysOpen <= 360)) {

        $daysOpenStr = "7: 181-360 days";

    } elsif($daysOpen > 360) {

        $daysOpenStr = "8: 360+ days";

    }  

    # Make sure the $daysOpenStr value is defined  

    # DaysOpen dimension table.  If it isn't, the

    # value needs to be inserted. Otherwise, you cannot

    # create a reference to it.

    $queryStr = "select dbid from $DAYSOPEN_TABLE " .

                "where $DAYSOPEN_FIELD = '$daysOpenStr'";

    my $resultSet = $session->BuildSQLQuery($queryStr);

    $resultSet->Execute();

    if ($resultSet->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

      # If the value is already defined in the table, then

      # the dbid then no need to do anything.

    } else {

       # do an INSERT

       $entity = $session->BuildEntity($DAYSOPEN_TABLE);

       $entity->SetFieldValue($DAYSOPEN_FIELD,$daysOpenStr);

       $retVal = $entity->Validate();

       $entity->Commit();

    }

    my $entity = $session->GetEntityByDbId("defect", $dbid);

    $session->EditEntity($entity,"modify");

    $entity->SetFieldValue($DAYSOPEN_FK, $daysOpenStr);

    $retVal = $entity->Validate();

    $entity->Commit();

 } # end subroutine updateDaysOpen()

sub logon {

    #

    # Use the internal DashboardSystem login to get access to the Dashboard database

    #

    my $session = Win32::OLE->new('CLEARQUEST.SESSION');

    my $session = CQPerlExt::CQSession_Build();  

    $session->UserLogon("dashboardsystem", "dashboardsystem", "tstd1", "Dashboard");

    return $session;

}

# get date and set the global variables $currentDate and $currentTime

sub getCurrentDateTime {

    my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

    $mon = $mon + 1;

    $year = $year + 1900;

    if ($mday<10) {$mday="0$mday"; }  # add leading 0

    if ($mon<10) {$mon="0$mon"; }     # add leading 0

    # set the global variable $currentDate

    $currentDate="$year-$mon-$mday";

    # set the global variable $currentTime

    $currentTime = $hour . ":" . $min . ":" . $sec;

}

5.1.4 Test Case Results

A ProjectConsole transformations are required to compute the executed test cases and the planned test cases.  The transformation written in SQL is provided in the following sections.  

This transformation must be executed after collecting ‘Test Case Execution Status’ measures.

5.1.4.1 UpdateTestMgrExecutedTCCollection.sql

update tm_executedtest_cases_

set tm_test_cases_passed = 1

where actualresult_fk in (select dbid from tm_actualresult_dim where actualresult='Pass');

update tm_executedtest_cases_

set tm_test_cases_failed = 1

where actualresult_fk in (select dbid from tm_actualresult_dim where actualresult='Fail');

PAGE  

