[image: image1.png]software

Example Practices Customization – Company ABC
Table of Contents

1Table of Contents

1.
Introduction
2
1.1.
Purpose
2
1.2.
Prerequisites
2
1.3.
How to read this document
2
2.
Overview of Company ABC Plug-ins
2
3.
Scenarios
3
3.1.
Create an initial custom website
3
3.2.
Customize templates and specify tools
4
3.3.
Tailor the “scaled agile with subphases” process (minor change)
5
3.4.
Add a new practice and incorporate into the “scaled agile” process
5
3.5.
Remove a single method element from the configuration
6
3.6.
Contribute to an existing task
6
3.7.
Use alternative roles
8
3.8.
Specify review formality
9
3.9.
Generate summary information
10
4.
AUTHOR NOTES
11
4.1.
Open issues/questions:
11

Introduction

1.1. Purpose

When a company tailors the IBM Practices for their organization, they do many of the same kinds of changes. In order to make this process easier, IBM has provided this “Example Practices Configuration for Company ABC”. This document describes some scenarios for how Company ABC tailored the IBM Practices. The associated plug-ins can be viewed to see the end result of these scenarios.

When you tailor practices for your organization, you can use the example plug-ins for Company ABC as the starting point for your own plug-ins. When making changes similar to the scenarios described in this document, you can follow similar steps, and refer to the examples to compare with your own work.

1.2. Prerequisites

This example is based on RMC 7.5.3 and and IBM Practices library included with that release. To install the example plug-ins, unzip companyabc-practices.zip and follow the instructions in file “readme.txt”.

1.3. How to read this document

This document and the example plug-ins are intended as examples to guide real-world implementations of the IBM Practices. You can also apply the scenarios as learning exercises.

The example plug-ins can be copied and used as the starting point for your tailored version of the practices.

The scenarios in this document describe steps to tailor a process. You can mirror the scenarios to make similar changes in your own plug-ins.
Some links to demo videos are provided, but note that these are based on an earlier library, so are out of date.

2. Overview of Company ABC Plug-ins

· core.default.release_copyright.base-abc

· Defines ABC company’s copyright information.

· core.default.role_def.base-abc

· Roles at company ABC – used in place of IBM roles.

· core.tech.common.extend_supp-abc
· adds templates and selected representation information to technical work products
· practice.mgmt.iterative_dev.extend-abc
· extends the iterative development practice with company ABC extensions
· process.abc_ap.base-abc

· defines a minor customization of an IBM provided delivery process
· publish.abc_ap.base-abc
· contains views customized for Company ABC’s Agile Process – ABC_AP.
· *.assign-abc

· role assignments for company ABC – used in place of IBM role assignments

The following configurations are also included with the plug-ins:

· ABC_AP
· a configuration of agile practices for Company ABC

· ABC_Governance
· a configuration that defines a set of mandated work products and their states, required by all ABC process configurations.

3. Scenarios

Each of these scenarios describes a specific goal. You can publish an incrementally refined configuration after the completion of each scenario. Following each scenario is additional guidance on how to leverage this scenario and the example library in your own authoring.

3.1. Create an initial custom website

Purpose

Company ABC wants to define a process for agile teams, the ABC Agile Process (ABC_AP). It includes Company ABC specific getting started information. Company ABC expects to have several different configurations eventually, with some common look and feel to all configurations, so a default view and default getting starting information is also created.

Steps (demo)
1. Create a plug-in that has ABC’s copyright notice.

Although not always stated explicitly, all plug-ins created in this scenario that end in “-abc” should be assigned the abc copyright element defined in this plug-in.

a. Copy plug-in core.default.release_copyright.base-ibm to create core.default.release_copyright.base-abc.
i. File > New > Method Plug-in

ii. Select “Create from existing plugin”

iii. Name the new plug-in “core.default.release_copyright.base-abc”

iv. Right click on the new plug-in and “Make plugin modifiable”.

b. Rename the “commercial_copyright” element to be “abc_copyright”.

c. Modify the copyright information to reflect ABC’s standard copyright notice and logo.
Since ABC plug-ins may include some text copied from EPF or IBM copyright, the ABC copyright should state this and link to IBM and EPF copyright pages and include those plug-ins in all their configurations.
d. Rename the release_info.ibm page to be “release_info.abc”
e. Replace the release_info.abc content with “ABC Version 1.0”.
f. Clear or assign new icons to the elements showing a red icon (custom icon assignments don’t copy over). If you want to assign the same icon, you can find those icons in the “<element_type>\resources” folder of the plug-in that they were copied from.
2. Decide on a name for Company ABC’s agile process – in this case “ABC Agile Process” or “ABC_AP”.
3. Create a plug-in “publish.abc_ap.base-abc” to include information specific to the ABC_AP configuration.
a. When creating the new plug-in, set the core.default.release_copyright.base-abc in the list of “Referenced plug-ins”.

b. Assign the ABC copyright element to the plug-in’s copyright attribute (so that it will appear at the bottom of every page published from this plugin).
4. Create a “welcome” page (of type “supporting material”) and include information welcoming readers to the process.
You will need to create a package, (I called it “general”) to contain the welcome page for the ABC_AP configuration.

5. Create a view

a. Edit the publish.abc_ap.base-abc plug-ins list of referenced plug-ins to include the core.default.nav_view.* plugins.

b. Copy ”navigation_view_generic-ibm” from the core.default.nav_view.extend-ibm plug-in to your plugin.

c. Change “IBM” to “ABC” in the name and presentation name.

(The view is now called “Team ABC”)

d. If you want additional views, create a “view_tabs_for_abc_ap” custom category to group your view custom categories.
e. Edit the “Team ABC” view to unassign the existing “welcome” page and assign your new welcome page.
6. Create a new configuration named “ABC_AP”. Select the following plug-ins:

a. All of “core” (RMC will only publish what is used from core).

b. Management practices:
· Iterative Development

· Release planning

· Risk value lifecycle

· Team Change Management

· Whole Team

c. Technical practices:
· Concurrent testing

· Continuous integration

· Evolutionary architecture

· Evolutionary design

· Shared vision

· Test-driven development

· Test management

· User-story driven development
d. “publish.abc_ap.base-abc” plug-in

7. Change the configuration’s default view to be the Team ABC view from “publish.abc_ap.base-abc”.
8. Create an “ABC Agile Process” banner for publishing, that includes the ABC logo, and place this file in the “publish.abc_ap.base-abc” directory. (A file abc_agile_process_banner.jpg is included in this tutorial’s zip file).
[image: image2.png]@ ABC Agile Process _ -’r -

9. Edit the configuration’s default publishing options to:

a. Set the Feedback URL to the ABC_AP team’s feedback email address.

b. Change the banner image to point to the new banner file.

Additional guidance

This example can be used as the starting set for your company’s process plug-ins.

As you make changes, you can rename elements that have “ABC” in the name, replacing ABC with an acronym for your company. For example:
1. Edit welcome page to say “Welcome to <company name>
2. Modify the plug-in name to say <company abbreviation>
3. Edit the banner file to replace the “company ABC” banner, and update the publishing options to point to your new banner file.

4. You can then modify the welcome pages with content specific to your company, and modify the views to suit your needs.
3.2. Customize templates and specify tools
Purpose

ABC wants to customize the document templates that come with the practices. In this example, they provide a template for a “Use case specification” document. In addition, they want to specify that Rational Requirements Composer be mandated for capturing storyboards.
Steps (Demo)
1. Copy the formal use case specification template “umf_use_case_spec.dot” file, found in plug-in “core.tech.common.extend_supp-ibm”, to your desktop.

2. Rename it to “abc_use_case_spec.dot”.
3. Add Company ABC copyright, and change the document properties to include “Company ABC” as the company.

4. Create a new plug-in “core.tech.common.extend_supp-abc”.
a. File > New > Method Plug-in
b. Select the “create a contributor” plug-in option.
c. Specify “core.tech.common.extend_supp” as the plug-in for which to create contributors.
d. Under “select types”, choose to create contributors only for “artifacts”.
e. Choose “keep original package structure” (a good default if you anticipate having many contributors).
f. Specify qualifier “abc” (this gets appended to all contributing element names).

g. Create a package called “Templates”.
h. Add a new “template” guidance element named “Use case specification” in package “Templates” and associate the “abc_use_case_spec.dot” file to the template element. Since this creates a copy of the file in a “resources” subfolder, you can delete your original.
i. Edit the contributing “use_case.abc” work product element.
a. Add an association to the new template guidance element.
j. Edit the contributing “system-wide_requirements.abc” work product element. Add “Rational DOORS Next Generation” to the “Selected representation” attribute.

k. Edit the ABC_AP configuration to include the new plug-in “core.tech.common.extend_supp-abc”.
Additional guidance

You can edit any of the contributing artifacts to add to any of their attributes, not just the “Selected representation”.
3.3. Tailor the “disciplined agile delivery” process (minor change)

Purpose

ABC wants to create their own delivery process. To start with, they want to follow the “disciplined agile delivery” process, and remove the activity “Manage Release” from the transition phase.

Steps (demo)
1. Select the current active configuration to tech.dad-ibm. (This makes the disciplined agile delivery process visible in the editors for subsequent steps).

2. Create the plug-in “process.tech.abc_agile.base-abc”.
3. Create a new delivery process “abc_ap” (default configuration “None” – generally you should NEVER assign a configuration to a process – it limits what you can do with it later).
4. Go to the work breakdown structure tab, and use the properties view to change its variability to “extends” and the base to “process.practices_for_agile_delivery.base-ibm/dad_lifecycle”. This results in a “by reference” copy of the original delivery process.
5. Suppress the activity “Manage release” from the transition phase.
6. Add both the new plug-in and process.dad.base-ibm to the “ABC_AP” configuration. (Note this means that both the original and new processes will publish. If you don’t want the original to publish, you can either customize your view categories so only your new delivery process displays or you can copy the original delivery process rather than extend it).
Additional guidance

You can use this “abc_ap” process as the basis for minor customization of the “disciplined agile delivery” process. You can follow similar steps to customize other processes.
Note that if you publish at this point, you will get both the ABC AP and Disciplined Agile Delivery Lifecycle processes. If you don’t want to see both, you need to create a new custom category that lists just the delivery processes you want to see, and update your view accordingly.
3.4. Add a new practice and incorporate into the process
Purpose

ABC has a practice to add into the library, including tasks to include in the “abc_ap” process. Specifically, they are adding a “Retrospectives” practice, as described in the RMC tutorial “Create a UMF Practice”.
Steps (demo)
1. Create the practice, as described in the RMC online help tutorial.
Other than creating the practice, the only critical steps for this tutorial is to apply tags:
a. Make sure all tags are selected in Preferences/Method/Authoring/Tags, and that the DEFAULT tag group is Active.
b. Tag the practice element as “cat_sw_proj_mgmt” so shows up in the set of “management practices” in the published configuration.
2. Tag the “rel_info” element as “nav_release_information” so that page shows up in the set of release information.
3. Edit the ABC_AP configuration to include the new practice plugin.

4. Edit the “abc_ap” delivery process in the “process.tech.abc_agile.base-abc” plug-in. Add the new task to the “Inception Iteration [1..n]” activity.
Note that in order to add the task, the activity needs to be changed to “local contribution”.

Additional guidance

You can follow similar steps to add more practices and add the resulting elements into a delivery process.

3.5. Remove a single method element from the configuration

Purpose

In a previous scenario, we added a task to do “retrospectives”. Company ABC decided that they no longer need to perform the similar task “assess results”. They wish to selectively remove just this one task.

Steps (demo)
1. Add a custom category “subtracted content” to the “publish.abc_ap.base-abc” plug-in.

2. Add the “assess results” task to that category.
a. Use “Search/Method Search” to find the plug-in containing the task.

b. Add to publish.abc_ap.base-abc “referenced plug-ins” list - add the plug-in containing the task you wish to suppress.
c. Now you can edit the category and assign the task to the category.
3. Modify the ABC_AP configuration to check “subtracted content” under “Subtract these Categories”.

Additional guidance

You can add any content to the “subtracted content” category that you do not wish to include in the configuration. If possible, you should first try to deselect plug-ins or packages, as this kind of configuration is easier to understand and maintain. Subtraction categories (and addition categories) can be used for further refinement.
Note that subtracted tasks will still display in the Browsing perspective on Delivery Processes. You have to actually publish the configuration to see the effect of the subtraction (which is to suppress that task from the delivery process).

Note that with the addition of the “Team Process” perspective, it is also possible to suppress elements directly in the treebrowser. This is faster and easier than the “subtracted categories” method, and but requires learning how to use that perspective, which is not covered in this tutorial.

3.6. Contribute to an existing task

Purpose

Company ABC wishes to add contributions to an existing task. In this case, add a step to “task: manage iteration” called “schedule daily scrum meeting”.

Steps (demo)
1. Create a plug-in “practice.mgmt.iterative_dev.extend-abc. Used the “create a contributor” plug-in option to create it from practice.mgmt.iterative_dev.base. Under “select types”, choose to create contributors only for “tasks”. Choose “keep original package structure” (a good default if you anticipate having many contributors). Add the qualifier “abc” (this gets appended to all contributing element names).

2. Edit the contributing task named “manage_iteration.abc”. Add step “schedule daily scrum meeting” as the first step (using the “Order” button).
3. Edit the ABC_AP configuration to include the new plug-in.
Because the processes in this example were created with “None” as the associated configuration, they will pick up this step whenever a configuration is published that includes the contributing element.

3.7. Use alternative roles

Purpose

ABC has a very different set of roles for performing software development. Rather than tweak IBM roles using selective replacement and additions, ABC has decided to define their own role definition and assignment plug-ins.

Steps

The quickest way to create an alternative set of roles and role assignments is to unlock and modify the existing role definition and assignment plug-ins.

When you make such a modification, you may want to rename the plug-in to “-abc” so that you know this is a modified plug-in.

As an example:

1. Add a role “requirements specifier”
a. unlock core.default.role_def.extend-ibm

b. Change the plug-in suffix from “-ibm” to “-abc”.
c. Add the role

d. Change the plug-in to use the abc copyright as well as retaining IBM copyright information.

e. add the new role to the “requirements_roles_list” role set

2. Change the performing role for task “Capture confirmations” to be the new role.

a. unlock core.default.role_def.extend-ibm

b. Change the plug-in suffix from “-ibm” to “-abc”.

c. Add core.default.role_def.extend-abc to the list of referenced plug-ins

c. Modify the task “capture_story_confirmation.assign_role” to change the role assignment.

Since there is no text in this plug-in, no need to change copyright information.

RMC will report errors in plug-ins and configurations that have dependencies on deleted plug-ins or deleted roles. You can ignore these errors, or unlock the plug-ins and fix the errors (you can use the “quick fix” option), or delete these plug-ins.
3.8. Generate summary information
Purpose

ABC project managers want a quick reference for what tools and templates are mandated for each work product. This is done by creating a BIRT report. To learn about how to create BIRT reports with RMC, see the following articles:

· Using BIRT reports with IBM Rational Method Composer: Getting started
· Using BIRT reports with IBM Rational Method Composer: An intermediate-level example of creating BIRT reports
Steps

1. From the report design perspective, create new blank BIRT report, called “artifact_report”.
2. Select as the data source “method library data source” and check “currently open library” and set ABC_AP as the configuration.
3. Create a data set, name it “artifacts” and select “artifact” as the Element Type. Select the following fields:

a. Presentation name

b. Representation

c. Templates

4. Create a data set, name it “templates” and select “template” as the Element Type. Select the following fields:

a. GUID

b. Presentation name

c. Attachments

5. Drag and drop the artifact data set onto the report layout editor.

6. Drag and drop the templates data set on to the templates data cell in the report layout.

7. Add a filter to display only templates for the corresponding artifact:
 row._outer["templates"].indexOf(row["guid"])!=-1

8. Delete all rows and columns and data elements from the templates data cell except for the data cells for “Presentation name” and “Attachments”.
9. Generate the report, selecting “ABC_AP” as the configuration.

10. Add the report to the “getting started” information in the “ABC_AP” welcome page.

[image: image3.png]Work Product
Business Case

Data Model

Design Class

Design Package

Design Subsyster
Glossary

Implernentation Model
Integration Build Plan
Interface

Heration Plan

Navigation Map

Risk List

Software Architecture Document
Software Requirernent
Software Requirements Specification
Stakeholder Requests
Storyboard

Test Case

Test Data

Test Evaluation Surnmary
Test Plan

Test Results

Test Script

Test Suite

Test-ldeas List

Use-Case Model
Use-Case Realization
‘ision

Representation ‘Templates
Microsof(R), Ward(R); ABC Business Case
Rational Rose
Rational Rose
Rational Rose
Rational Rose

Microsoft Visual Basic
Microsoft Word
Rational Rose

Microsoft Word ABC heration Plan
Microsoft Word ABC Risk List

Rational SoDA

Micrasoft Word (R); ABC Requirements Plan
Micorsoft Word ABC Stakeholder Requests

Microsoft Word
Rational Rose

Microsoft Word ABC Test Evaluation Summary
Micorsoft Word ABC Test Plan
Microsoft Word ABC Test Results

Rational Rose
Microsoft Word ABC Test Guidelines
Microsoft Word

Rational Rose

Microsoft Word ABC Vision

Additional guidance

You can use the included BIRT report to generate this report, or create your own BIRT reports to provide similar summary information.
4. AUTHOR NOTES

4.1. Open issues/questions:

1. Renaming ABC to a specific company (DEF) could be helpful. Reference to the RMC DeveloperWorks community FAQ on renaming sets of plug-ins.
2. In the scenarios, I identify the steps need to make a change. Consider including notes that emphasize where an RMC features saves a lot of work. This might be worthy of a general description earlier on, rather than a scenario specific explanation.

3. Might be good to include an example of how to leverage process slots to create a family of related processes

4. Might be good to describe how to mandate states of work products at milestones. There are many different ways to do this – perhaps a separate article is warranted that compares these options:

a. “Activity exit state”

b. “Milestone required result”

c. Work product descriptors

d. Subartifacts for states

e. Tasks with input/output work products.

f. User-defined attributes

5. Could adding RACI support as another scenario, or at least reference the article on DeveloperWorks.
6. Could add scenarios for:

a. Specify approvers

b. Revise disciplines

c. Add a new phase.

©

©Copyright IBM Corp. 2009-2018. All Rights Reserved.

6 of 10

