IBM Software
Rational

IBM Rational Team Concert 4.x
Extensibility

Lab Exercises

An IBM Proof of Technology

© Copyright IBM Corporation 2010 - 2014

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Contents
(@AY =2V | =11 4
LAB 1 SETTING UP THE IBM® RATIONAL® TEAM CONCERT (RTC) SDK......ccoiccceierrrceere e rssssmee s s s sssee s s s smmne s snssnnes 5
1.1 DOWNLOAD AND UNZIP THE REQUIRED FILES FROM JAZZ.INET ...ttt e e 6
1.2 SETUP FOR DEVELOPMENTottt e et e et e e e e e e et e e e e e e e e a—aaaaeaeeeeeaeaeaeaeeeseesssae s assassaasesaseeeeeseseaeeseeesseeesssanssrnes
1.3 SETUP THE RTC TOMCAT SERVER ..
14 COMPLETE SETUP OF YOUR RTC ECLIPSE CLIENTceii ettt e e e e e e e e e e e e e e e e e e ennas 25
1.5 TEST CONNECTING THE ECLIPSE DEBUGGER TO TOMUCATottt ettt e e e e s e e s e e e eeeaaanas 39
1.6 TEST THE JETTY BASED SERVER LAUNGCH..... ..ottt ettt e et e e e e e e e e e e e e e ee e s et aeaaeeeeeseesseeeaeenrans 45
1.7 TEST THE RTC ECLIPSE CLIENT LAUNGCHt e et e e e e e e e e e e e e e e e e s e e e e e e e eaaeeennnns 54
LAB 2 CREATE A SIMPLE BUILD ON STATE CHANGE OPERATION PARTICIPANT ... cciireeecireeeec s essnnasnnas 57
2.1 CREATE ABASIC SERVER SIDE SERVICE..... .ottt e aenns 58
2.2 LAUNCH THE SERVER FOR DEBUG USING JE T Y oottt ettt e e e et e e e e e e e e e e e naenas 66
2.3 LAUNCHAN RTC CLIENT AND CONNECT TO THE SERVER.......uueeteiieeeieeeeeeeeeee ettt 68
2.4 EDIT THE PROCESS TO USE THE PAR T ICIPANT ...ttt ettt e e e et e e e e et e e e e e e e e e e s aaaa e s e e e st e esansanennns 70
2.5 TRIGGER THE PAR T I C I PAN T ..ottt e et e e e ettt e e e e e e e e e et e et e e e eeeeeeeeeee e e eeeeeaeeeeaeaaeeeeneeesnaaannnns 76
2.6 RENAME BUILD DEFINITION AND TRY AGAIN oottt e e e e e e e e e e e e e e 82
LAB 3 ADD ERROR HANDLING
3.1 UNDERSTANDING ERROR HANDLING CODE........ ittt e e e et e e e e e e e e e e e s e e e e eaaeeaas 87
3.2 LAUNCH THE SERVER FOR DEBUG USING JET T Y ¢ttt eaaeaean 91
3.3 LAUNCH AN RTC CLIENT AND CONNECT TO THE SERVER. ... i ettt ettt 92
T S I e A [T o I = I (O | =N A 93
3.5 RENAME BUILD DEFINITION AND TRY AGAINuuiii ittt et e e e e ettt e e e e e e e e e e eeea et e e eessasesssaaaeeeeanneeees 95
LAB 4 PARANETERIZATION. ... coeeeiiiitieciiieseairerasessseesnssssssennsssssesnssssssssnsssssssnnsssssssnssssssssssssssssnnssssssnsssssnsssnsssnsssnnssnnss
4.1 UNDERSTANDING PARAMETERIZATION....
4.2 LAUNCH THE SERVER FOR DEBUG USING JE T Y . oottt 110
4.3 LAUNCH AN RTC CLIENT AND CONFIGURE THE PARTICIPANT ... oot 111
4.4 TRIGGER THE PARTICIPANT ...ttt ettt e e e e e et e e et e e e e et eeeeeeeeaeeeaeeeeeesssaes s aaaessessaseeeeseeeeaaeeeeeesseeessssnsssennnnns 116
4.5 CHANGE THE BUILD ID IN THE CONFIGURATION AND TRY AGAIN. ... oo 118
LAB 5 ADDING AN ASPECT EDITORL....cetuuiiiiteeiiireeessisiesssssissrenssssrresssssstesssssssssssssssrresssssstesssssssssssssssrsessssssssssssssensses
5.1 UNDERSTANDING THE ASPECT EDITOR ..
5.2 LAUNCH THE SERVER FOR DEBUG USING JETTY ..ottt e et e ettt e e e e aeeeeeeeseeessaeeesesananeeeees 130
5.3 LAUNCH AN RTC CLIENT AND CONFIGURE THE PARTICIPANT ...t e e e e e e 131
5.4 TRIGGER THE PAR T CIPANT ...t e e e et e e e e e e e e e et e e e e e e e e e e e e e e e eaeeeeen 135
5.5 ADD ANOTHER INSTANCE OF THE FOLLOW-UP ACTION AND TRY AGAINoo it 137
LAB 6 DEPLOYING THE SERVER SIDE........cuciieuiiituiiieeirresisenssenssssnsssensssenssssnssssnssssnssssnssssnnsssnnsssnnsssnnsssenssssnssssnssssnns 139
6.1 CREATING A SERVER SIDE FEATURE.. ..139
6.2 CREATE THE SERVER UPDATE SITEo oottt ettt e e e e et e e e e et et e e ettt e eeeaeeeeeeseeesseeas s saaassasesanseesenanneeenes 146
6.3 DEPLOY THE SERVER SIDE FEATUREottt e e e et eeesaaa e eeesaeeeneeen 153
6.4 DEPLOY THE CLIENT PLUGH-INSttt e e e e e e e et e e e e e e e e e e et eeeeeens 157
6.5 TEST THE DEPLOYED PAR T ICIPANT ...ttt ettt ettt ettt e et e e e e aeeeeeeeseeesa e s asesaaeeeeeeeeeaeeeeeesseeeaaaaaaaeeees 160
8.6 COMPLETE DEVELOPMENT ..ottt ettt ettt ettt ettt e e e e e et e e e et ee s s e e as e aaaeeeeeeseeaaaeseeessseesassssaesssasssesseessennnnesenes
APPENDIX A NOTICES..... oo ciiiiieiiiiiisaiiisseas s irssas s s s esssssssreansssstrasssssssassssssstennsssstesssssssssannssnnsennnss
APPENDIX B TRADEMARKS AND COPYRIGHTS

Contents

Page 3

IBM Software

Overview

You are a member of the team managing the deployment and administration of your company's software
development tools infrastructure, including Rational Team Concert (RTC). Among other things, one of
your assignments is to create extensions to the tools as required by the software development teams.

Now you have been assigned to create a new work item save operation participant (or follow-up action).
If the participant is configured for a project and a Story is changed to the Implemented state, one of the
project’s builds will be run. If the build can not be started, the work item save is stopped.

In this workshop, you will setup your development environment for creating RTC extensions and then
implement this particular operation participant.

Introduction

In order to complete and get the most out of this workshop, it is recommended that you are already
familiar with RTC as a user. Of particular help would be familiarity with work items, build definitions and
basic process customization. In addition, you should be familiar with Java programming and debugging
using Eclipse. Some familiarity with Eclipse plug-in programming would also be helpful but is not strictly
required. There are a number of Eclipse plug-in development tutorials available on the web (for example,
http://www.ibm.com/developerworks/library/os-eclipse-plugindevi/).

Note that these instructions are written specifically for RTC 4.x on Windows®. Please adjust accordingly
for different operating systems (primarily the RTC Eclipse client download and the file paths) and RTC
versions (downloads).

Along with this lab document(s), you should have received or downloaded the file WorkshopSetup-V4-

YYYYMMMDD.zip. This file contains a small RTC Plain Java Client Libraries tool that will be used to
create a project and populate it with data.

Ilcons

The following symbols appear in this document at places where additional guidance is available.

Purpose Explanation

)
|
5

This symbol calls attention to a particular step or command. For
Important! example, it might alert you to type a command carefully because
it is case sensitive.

This symbol indicates information that might not be necessary to

Information complete a step, but is helpful or good to know.
Trouble- This symbol indicates that you can fix a specific problem by
shooting completing the associated troubleshooting information.

© P

Page 4 IBM Rational Team Concert 4.x Extensibility

http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/

IBM Software

Lab1 Setting up the IBM® Rational® Team Concert (RTC) SDK

Lab Scenario
You have a new assignment on a team creating RTC extensions. The first
thing you need to do is to set up your development environment.

Once you have completed this module, you will be ready to start develop-
ing RTC extensions.

In order to complete and get the most out of this workshop, it is
recommended that you are already familiar with RTC as a user. Of
particular help would be familiarity with work items, build definitions and
. basic process customization. In addition, you should be familiar with Java

programming and debugging using Eclipse. Some familiarity with Eclipse
plug-in programming would also be helpful but is not strictly required.
There are a number of Eclipse plug-in development tutorials available on
the web (for example, http://www.ibm.com/developerworks/library/os-
eclipse-plugindev1/).

Note that these instructions are written specifically for RTC 4.x on

Windows®. Please adjust accordingly for different operating systems
(primarily the RTC Eclipse client download and the file paths) and RTC
versions (downloads).

The Workshop should run with 4.0 and higher versions of RTC. In case
you have trouble, ask in the Jazz.net Forum for help.

Lab 1 — Setting Up the IBM RTC SDK Page 5

https://jazz.net/forum/
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/

IBM Software

1.1 Download and Unzip the Required Files from jazz.net

Important!

Please note, the install description for the RTC Server
below is for the Web Installer. Please see the information

below for other install options.
Other Install Options
You can use the other options to install RTC as well.

1. You can install from an IBM Installation manager
repository similar to the web install below

2. You can use the RTC Plain Zip install file; use 7Zip
and unzip to the folder
C:\RTC40Dev\installs\JazzTeamServer and you
are done

Separate RTC versions using different folder names

Use a different folder name for each RTC version, e.g.
RTC403Dev for RTC 4.0.3 to be able to maintain
different versions. Replace the folder name used in the
workshop instructions if following this approach.

1. Download the product installation files.

a. Go tothe RTC all downloads page for your version of RTC. As example for 4.0 at
https://jazz.net/downloads/rational-team-concert/releases/4.0?p=allDownloads. The file
sizes will vary from what is shown next.

Page 6 IBM Rational Team Concert 4.x Extensibility

https://jazz.net/downloads/rational-team-concert/releases/4.0?p=allDownloads

IBM Software

__b. Scroll down to the Web Installers section and download the highlighted file. This will be
used to install the server (but not the client). You will need a jazz.net id. There are other
options for download and install if you prefer. This workbook will use this method.

Web Installers [Show MD5 download verificati

These downloads contain the IBM Installation Manager and a launchpad which is configured to pull the product-
specific installation bits from jazz.net. Simply unzip the download, run launchpad.exe (windows) or launchpad.sh
(unix), and click the launchpad links to run the Installation Manager for each product you need to install. See the n
section if you need to perform an Installation Manager product install in an environment where you cannot establish
network connection to jazz.net.

Tip: Installation will fail on Windows if downloads are extracted in a directory whose path name is longer than 100
characters. Refer to technote 1455480 for additional details about this limitation.

Description Platform

ZIP

Jazz Team Server and CCM, QM, and RM Windows x86 (114.01 MB)
Applications; trial licenses for Rational Team Linux x86 (115.91 MB)

Concert, Rational Quality Manager, and Solaris-64 (117.61 MB)
Rational Requirements Composer; Clients for AIX PPC (122.12 MB)

Eclipse and Microsoft Visual Studio IDEs; Linux for System z (111.09 MB)
Windows shell integration; MSSCCI Linux on Power (115.89 MB)

integration; Build System Toolkit; and

ClearCase and Clear

__¢. Scroll down to the License Keys section and download the highlighted file.

License Keys

The Web installer and Installation Manager repositories include base license keys that are required by the server, a
well as trial keys for certain role-based licenses. You can purchase license keys or install any of the keys below.
Consult the documentation to find out how additional license keys may interact with the required base license keys
installed with the server.

Description Platform

ZIP

10-Free Developers License Activation Kit All (381.59 KB

Lab 1 — Setting Up the IBM RTC SDK Page 7

IBM Software

__d. Scroll down to the Plain Zips section and download the highlighted client zip file.

Plain Zips

Unzip these zip files to quickly install specific IDE-based clients or other tools. The Client for Microsoft Visual Studio
IDE can only be installed using the Web Install or locally using the Installation Manager repositery. Please note that
the RTC Client for Eclipse IDE on Mac OS X is community-supported only.

Description Platform
zIP
Client for Eclipse IDE [Windows x8s (320.38 MB) |

Linux x86 (377.69 MB)

Mac OS X (307.47 MB)
MWJ

Also download the highlighted zip files for the Plain Java Client Libraries.

Linux x86 (165.11 ME)

Plain Java Client Libraries All (28.63 MB)

Plain Java Client Libraries APl documentation All (5.68 MB)

All (472.85 MB)

p2 Install Repository

Scroll down to the Source Code section and download the highlighted file.

Source Code

Description Platform
ZIP
Rational Team Concert SDK All (704.02 MB)

e. Go to the feature based launches wiki page at
https://jazz.net/wiki/bin/view/Main/FeatureBasedLaunches.

f. Download the attached com. ibm.team.dev.launch 0.3.3.201004231417.jar
file. Make sure the file name is correct and has no other extension. If the download
changed or added a different file name extension, rename the file.

Page 8 IBM Rational Team Concert 4.x Extensibility

https://jazz.net/wiki/bin/view/Main/FeatureBasedLaunches

IBM Software

_ 2. Set up a directory structure to contain your extensions development and test environment.

a. Many people like to isolate their extensions development environment from their normal
application development environment. This helps avoid blocking your application
development work (which may be your day job) by a buggy extension you have created
and deployed (during your extra time). This workshop will assume the following folder
structure on the C: drive.

4 RTC40Dey
installs

workspaces

The RTC40Dev root folder will contain all your work for this workshop. The installs
folder will be the target of the product installations you are about to perform. The
workspaces folder will contain your Eclipse workspace(s) and other related folders.

__ 3. Install the RTC Eclipse client and a test server.
a. Unzip the Web Installer download into a temporary directory and run launchpad.exe.

b. Install the Jazz Team Server and CCM Application to
C:\RTC40Dev\installs\JazzTeamServer.

c. Select Express Install

y-:} Rational Team Concert Launchpad l =1 ﬁr
Rational Team Concert Select a language: |English ~] oK|

-

= Plan and Prepare
Install the Jazz Team Plan and Prepare
Server and Applications

Install Optional Tools Small Deployments

Updates and Other To get started quickly with a small deployn default

Installation Manager topology and Derby databases, skip tq Express Install.|Derby =
Operations deployments are limited to 10 users armd o ftTross-domain
Exit reports.

Large Deployments

For large deployments, first read the Interactive Installation Guide or
Interactive Upgrade Guide to plan your initial deployment or upgrade.

Then visit the Optional Programs page at jazz.net to obtain programs
such as DB2, WebSphere Application Server and Rational Reporting for

|_Development Intelligence

Select user mode for Installation Manager: |Administrator hd

" A

__d. onthe next screen select Jazz Team Server with Required Base Keys, including
Trials, and CCM, QM and RM Applications

Lab 1 — Setting Up the IBM RTC SDK Page 9

IBM Software

-9

ry,_J Rational Team Concert Launchpad l = &]1
Rational Team Concert Select a language: |English | oK|

Plan and Prepare ot

Install the Jazz Team Express Install
Server and Applications
Rational Team Concert, Rational Quality Manager, and Rational

= Express Install) i
! Requirements Composer share a common server install. Once you have

Custom Install installed the Jazz Team Server and applications you can enable
. functionality for any combination of the three products simply by
Install Optional Tools installing and activating the appropriate product license keys. Trial e
Updates and Other keys are included and can be activated during setup or in the Jazz
Installation Manager Team Server administration pages.
Operations
Exit Install the Jazz Team Server and applications together in a single

application server using Tomcat and Derby. This option is
recommended for evaluation purposes and small-scale deployments
because Derby deployments are limited to 10 users.

] Jazz Team Server with Required Base Keys, including Trials, and
CCM, QM and RM Applications

Select user mode for Installation Manager: |Administrator hd

Provide the required password for administrative access and your Jazz.net user name
and password.

If you do not already have Installation Manager installed, it will be installed at this time.
After the install completes you can exit Installation Manager and the Launchpad.

During the installation, you will need to change some items from their defaults. All the
other default values are fine; in particular, be sure to install both the “Jazz Team Server
and CCM Application” and the “Required Base License Keys, Including Trials....”
installation packages. You can remove the applications Requirements Management and
Quality Management, this workshop focuses on the Change and Configuration
Management Application

If the product is already installed you will be prompted select to continue installation.

If you are on Windows 7, change the Shared Resources Directory to be outside the
Program Files or Program Files (x86) directories. These directories are virtualized and
if any part of the server is installed into a virtualized directory, the server would have to
be run as an administrator. Note that even if you are logged into Windows 7 as an
administrator, the default when starting an application is to not run it as an administrator.
You can put it anywhere you want, for example into C: \IBM\ IBMIMShared as long as it
is not virtualized.

i. Change the Installation Directory to
C:\RTC40Dev\installs\JazzTeamServer.

__ii. Review the installation packages. You may de-select Requirements Management
and Quality Management as these are not needed for the workshop.

Page 10

IBM Rational Team Concert 4.x Extensibility

IBM Software

h. Unzip the Client for Eclipse IDE zip file to C: \RTC40Dev\installs\TeamConcert.
Do not use Web Installer or any other Installation Manger method to install the client. You
need a plain Eclipse layout for this workshop and not a layout that optimizes disk space
via Installation Manger's area for shared features and plugins.

i. YourC:\RTC40Dev folder will look pretty standard at this point. Much like setting up a
sandbox or demo environment.

4 RTCA0Dev
4 installs
JazzTeam5erver
TeamConcert

workspaces

_ 4 Add the feature based launches capability to the RTC Eclipse client.

a. Copy the feature based launches download file
com.ibm.team.dev.launch 0.3.3.201004231417.jar into the folder
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse\dropins. The
dropins folder might not exist and then needs to be created by you.

b. Note that some users on Linux have reported that the file permissions on the jar placed
in the dropins folder are set to 755 and that the feature based launches would not show
up in the RTC Eclipse client until the permissions were changed to 644.

__ 5. Unzip the development time files.

a. Unzip the RTC SDK zip file into C: \RTC40Dev\installs\rtc-sdk. This zip file has
path lengths longer than 250 characters and may cause trouble for some extractor tools
on Windows. One zip extractor tool that works is 7Zip. You or your extraction tool will
need to create the rtc-sdk folder. It is not contained in the zip file.

Lab 1 — Setting Up the IBM RTC SDK Page 11

http://www.7-zip.org/

IBM Software

__b. Your c:\RTC40Dev folder will now look a bit different.

4 RTCA0Dey
o installs
) larrTeamSernser

a rtc-sdk

» features
license

> plugins

4 TeamConcert
4 jazz
4 client
4 eclipse

4 confiquration

dropins

> features

> L jdk

c. Unzip the RTC Plain Java Client Libraries files into
C:\RTC40Dev\installs\PlainJavaAPI.

d. Unzip the RTC Plain Java Client Libraries APl Documentation files also into
C:\RTC40Dev\installs\PlainJavaAPI. This resultin this final folder structure.

4 RTCA0Dey
4 installs
> lazzTeamServer
4 PlainavaAPl

> doc

license

snippets
g rtc-sdk

TeamConcert

» workspaces

0. Install the Workshop Setup tool.

__a. Along with this lab document(s), you should have received or downloaded the file
WorkshopSetup-V4-YYYYMMDD.zip.

Page 12 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. Unzip this file to C: \RTC40Dev\installs\. Your installs folder should now finally
look like below.

4 | RTC40Dev

4 | installs
» | JazzTeamServer
» 0 PlainJavaAPl
» . rte-sdk
> | TeamConcert
4 | WorkshopSetup

» |y Data

> | workspaces

1. Bulk_Mrvia_ranlararnan:

Lab 1 — Setting Up the IBM RTC SDK Page 13

IBM Software

1.2 Setup for Development

In this section you will setup your RTC Eclipse client for developing RTC
° plug-ins. This consists of letting Eclipse know what platform (set of Eclipse
features and plug-ins) you are developing for, opening the Eclipse
perspective designed for plug-in development and letting the Eclipse Java
Development Tooling (JDT) know about all the RTC platform source code.

7. Start the Eclipse RTC client.

a. Start the RTC Eclipse client
(C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse\eclipse.exe).

b. When prompted, select an Eclipse workspace. These instructions will use
C:\RTC40Dev\workspaces\Dev1\WS. Note that it is “\Dev1\WS” and not “Devi1WS”.
Either would work, but by default when you launch a runtime or debug session the
Eclipse workspace for the launched process is created as a sibling to your workspace
folder. By using the “\Dev1\WS” technique, this runtime workspace folder is created as a
peer to “WS” inside the “Dev1” folder. The makes it easier to have other isolated
development workspaces such as “ C:\RTC40Dev\workspaces\Dev2\WS” without any
collisions between launches that have the same name. Alternatively, you can specify a
launch's workspace location, but isolating them using this technique is easier to
remember.

c. Minimize the Welcome via this (m) button near the top of the window.

Page 14 IBM Rational Team Concert 4.x Extensibility

IBM Software

__8. Switch Text file encoding to UTF 8

__a. From the menu bar, select Window > Preferences. In the Preferences dialog, select
General > Workspace. In the Text file encoding section select Other and select the
encoding UTF-8. This is important to be able to run the launches for debugging.

[B [

;“} Preferences
type filter text WleSpﬁCE =10 J - w
4 General i See 'Startup and Shutdown' for workspace startup and shutdown preferences.
» Appearance
hiliie
"""ﬁﬂ P -W‘ *’at’"' P vaid™ o
» Startup and Shutdoy Open referenced projects when a project is opened
Web Browser e N 8 P "
> | Workspace | S Sl Bk
» Ant Teuxt file enceding MNew text file line delimiter
Context-Aware Search _ i
() Default (Cpl252) @ Default
» Help
» Install/Update @ Other UTF-8 - () Other:
Instant Messaging
> Java S
q | — - [Restore Defaults] [Apply l
@j [oK] l Cancel]

Page 15

Lab 1 — Setting Up the IBM RTC SDK

IBM Software

9.

Create a new target platform.

_a.

_b.

From the menu bar, select Window > Preferences. In the Preferences dialog, select
Plug-in Development > Target Platform and then click Add...

remerce: o =

type filter tesxt Target Platform L= e
b General Add, edit and remove target definitions, The active target definition -
b Ant will be used as the target platform which workspace plug-ins willbe [

Context-Aware Search compiled and tested against. Mew definitions are stored locally, but
» Help they can be moved to a project in the workspace.
v Install/Update . Target Definitions:
Instant Messaging -
& Java & Running Platform (Active) Reload... 1
4 Plug-in Develepment
APIBaselines Add..
API Errors/Warnings Edit..
Compilers |
Editors Rermove
05Gi Frameworks
| Target Platform | Move...
r» Run/Debug
[Team
[» Tearn Process
[Work Iterms —
@ | ok || canca |

In the New Target Definition wizard, select Nothing: Start with an empty target
definition and then click Next.

) New Target Definition

Target Definition

Create a new target definition.

| Initialize the target definition with:

-gJ}- |
@' |

@ Nothing: Start with an empty target definition

() Default: Default target for the running platform

_ Current Target: Copy settings from the current target platform

_ Template: Base RCP (Binary Only) -~

< Back

Next > Finish Cancel i

Page 16

IBM Rational Team Concert 4.x Extensibility

IBM Software

__c¢. On the second page of the wizard, enter RTC SDK as the Name and click Add...

) New Target Definition

- o —— (]

Target Content

Name: RTC SDK

Edit the name, description, and plug-ins contained in a target.

LOEaliOﬂS‘Content‘ Environment| Arguments| Implicit Dependencies

Show Plug-in Content

The following list of locations will be used to collect plug-ins for this target definition.

Add...

Edit...

Remove

Remove All

L

@ : < Back |
'l —

Next >

[[e |

4

__d. Inthe Add Content wizard, select Installation and then click Next.

(J Add Content
e, ———

Add Content

& Directory

Slnstallation

4*Features
sl Software Site

An installation (such as an

(?) < Back

Select a source of plug-ins.

be added to the target definition.

Eclipse SDK) in the local file system. The installed plug-ins will |

Cancel

Finish

Next > _

Lab 1 — Setting Up the IBM RTC SDK

Page 17

IBM Software

__e. On the second page of the wizard, enter C: \RTC40Dev\installs\rtc-sdk as the
Location and then click Finish.

T

Add Installation
Select an installation directory.

Location:] CARTCAODeWinstallshrtc-sdk

.. || Variables..

This install uses the default configuration area.

Configuration:

Browse... Variables...

Finich

__f. After the operation completes, click Finish in the New Target Definition wizard.

__g. Back on the Preferences dialog, select the new Target Definition and then click OK.

() Preferences A |] g

type filter text Target Platform Ll v
General target definition will be used as the target platform -
Ant which workspace plug-ins will be compiled and tested
Context-Aware Search against. New definitions are stored locally, but they
Help can be moved to a project in the workspace.
Install/Update Target Definitions:
rtstans dessaoion 7/ ©RTC SDK (Active) | Reload...

Java ® Running Platform

Plug-in Development Add... 4
API Baselines [Edit... i
API Errors/Warnings |
Compilers | Remove |
Editors | bl

0OSGi Frameworks
Target Platform
Run/Debug
Team

Team Process
Work Items

L] 1] r -

|[oK ” Cancel

Page 18 IBM Rational Team Concert 4.x Extensibility

IBM Software

__10. Open the Plug-in Development perspective.

__a. Inthe toolbar toward the right, click the Open Perspective button.

B | [wiork Therms
|Dper'| Perspectiveh

__b. Then from the menu, select Other...

E
&) Java
34 Jazz Administration
[work Thems

__¢. Inthe Open Perspective dialog, select Plug-in Development and then click OK.

' 9 Open Perspective l ="t Iﬁj

&= CVS Repository Exploring
% Debug

+'Java

¢!Java Browsing

ts’Java Type Hierarchy

Jazz Administration

& Jazz Source Control Compare

“¥=Plug-in Development

(&5 Resource
&"Team Synchronizing
Work Items (default)

OK] ‘ Cancel

Lab 1 — Setting Up the IBM RTC SDK Page 19

IBM Software

__11. Add RTC source code to Java search.

_a.

_b.

On the left, select the Plug-ins view.

B paldap B2 gy | EETelETe| = 0

Flug-ins: F'Iug =
= comhp.hpl.jena (2.6.0.1) [A]
3= corn.hp.hpl.jena.rdf (2.6.0.12009102121

3= com.hp.hpl.jena.rdf.source (2.6.0.1200¢

2= corn.hphpl. jena.source (2,6.0.1)

3= corn.ibrm.adrenaline.core (0.6.0.120090¢

3= corn.ibrm.adrenaline.core.source (0.6.0.,

2= corn.ibricu (3.8,1.v20080530)

2= corn.ibrn.icu.source (3.8, 1.v20080530)
3= corn. b, micro.utils (2.0.0,2-20090306°
%= corn.ibr, micro.utils.nl (3.0,0,2-200903C0

2= corn.ibrm, micro.utils.nl source (3.0.0.2-2

3 g eI P T

From the view’s context menu click Select > All.

3= com, ibm, mattclient.nl.source (3.0.0.2-20090306)

[Packag | % Plug-in &2 - Sg My wor | B Team | 25 Team B8
Flug-ins: Plug-ins “iew: ==
EI:: rom.bn bl iena ©2UA0 1 [A]
¥ ofg Open Dependencies 110212101}
E]} * Find References 0200910212101
o
A= Import As » 1200905130131)
EJ} acid 1o Tava Search (0.6.0.1200905130131)
o
S 305307
e Select P Required Plug-ins
e Plug-ins in Java Search
b All
e Wiy
% = GO I 0090306)

“ p . .
b t Ll t, W*
-1J::= carn, ibrm.gationa Eearaues Emgpl{? |

Page 20

IBM Rational Team Concert 4.x Extensibility

IBM Software

c. From the view’s context menu select Add to Java Search. There is quite a bit of code.
This operation could take a while.

2 Pack % Plug &2 . TgMy |EiTea |&Tes | T O
Flug-ins: Plug-ins Yiew =
?,I::rnmhn bl iena 2 AT AN [A]
el Import As » BoD910212101)
EJ::: I.ﬁ.dd e 59aru:h| 2.6.0.1200910212101
- 0.1
EI? 6.0.1200905130131
e Select ¥ Lrce (0.6.0.120090513(
A 50
e 0080530}
£ 20090306
A 0.2-20050306)
EI? corm.ibm. micro.utils.nl.source (3.0.0.2-200903067)

r];bm mqtb:lgnt (3. DJED;D}Q) ™

¥
ﬁf

Lab 1 — Setting Up the IBM RTC SDK Page 21

IBM Software

1.3 Setup the RTC Tomcat Server

You will now setup the RTC Tomcat server. This server will be used in two
roles:

1. This RTC is used as your RTC Development server that provides you
with streams, SCM data and a capability to version your code

2. This RTC is used as a test server for the final deployment of the
extension you will create in this workshop

Next, you will enable the Tomcat server for debugging. Later, you will test
the setup by attaching the Eclipse Java debugger to the running server
and hitting a breakpoint.

In this section you will also import the workshop repositories into this
server.

Later, you will also launch the server from Eclipse under Jetty. This will
use a separate repository database from the Tomcat server to give you a
development test environment that is separate from your Tomcat test en-
vironment.

Testing with Tomcat has few advantages:
- Mimics a real deployment environment

° - Teaches you how to install and configure your extension on the
server
- Teaches you how to debug a running live server using Java tools
in Eclipse

The primary disadvantage is a longer code, debug and fix cycle.

__12. Setup to run the server in debug mode.

a. Open Windows Explorer and navigate to
C:\RTC40Dev\installs\JazzTeamServer\server.

b. Open the server.startup.bat file with either Notepad or Wordpad.

c. Find the following line that starts with the following. It is near the bottom of the file.

set JAVA_OPTS=%JAVA_OPTS% -Djava.awt.headless=true

d. After that line add these lines.

set JAVA_OPTS=%JAVA_OPTS% -Xdebug
set JAVA_OPTS=%JAVA_OPTS% -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=3388

Page 22 IBM Rational Team Concert 4.x Extensibility

IBM Software

e. Be sure to keep all the other options. Note that the port to attach the debugger to is
3388. Save the file and close the editor.

The port, 3388 in this case, could be different. It must be one that is not
blocked by your firewall or in use by another application. The one
suggested on jazz.net, 1044, was blocked on my laptop as | wrote this. |
was able to find an unblocked port by running the server without the
“address=<port>" sub-option on the “-Xrunjdwp” option. When | did that,
an unblocked port was chosen randomly and was displayed at the top of
the Tomcat console window. If 3388 does not work for you (the Tomcat
window dies as soon as it opens) you can try the same work around to
discover an open port.

__13. Complete setup of the server.

The description and repositories for this workshop for simplicity reason
provide data for JTS and all applications (CCM, QM, RM).

- The extensions are only for the CCM application.

- During the setup you can skip configuring the data warehouse for the
applications to save some time.

a. Open a Windows Explorer and navigate to
C:\RTC40Dev\installs\JazzTeamServer\server and run the server.startup.bat

file (the same file you just edited).

b. After the server has finished starting (the “INFO: Server startup in nnnnn ms” message is
displayed in the console), start your browser and enter the URL
https://localhost:9443/jts/setup.

c. Login with ADMIN as both User ID and Password.

Lab 1 — Setting Up the IBM RTC SDK Page 23

https://localhost:9443/jts/setup

IBM Software

Use the Express Setup option.

N

TEAM SERVER & APPLICATION SETU

The setup wizard provides two aptions for setting up th

If you are not sure which option to choose, the Custom
the descriptions for each option carefully and choose il

@ Express Setup

Use this wizard to run{through a simplified versi
will use the Tomcat Uger Registry. This is recom

Custom Setup

Lise this wizard to run through the full version
i ,and di Sk

Click Next.

On the Configure Public URI page set the Public URI Root to

https://localhost:9443/jts

+ There will be a warning when using this value, but this is not a real server and
only needs to be accessible by you from your machine.

Test the connection, accept the warning in step 2 and click next.

Page 24

IBM Rational Team Concert 4.x Extensibility

https://localhost:9443/jts

IBM Software

__iii. On the Create Administrative User page create a new administrator user
+ As User ID, name, password and re-type password enter myadmin

+ As e-mail enter myadmin@bogus.bad

Your screen should look as follows. Click next.

Create an administrative user for yourself in the Jazz Team Server:
Property Value
UserlD myadmin
Mame myadmin
Password ssssase
Re-type Password T
E-mail Address myadmin@bogus.bad

__iv. Wait for the Express Setup to finish. Click Next.

v. On the Assign Licenses page make sure to Activate a RTC Developer trial
license, if it is not already activated and assign a license to myadmin. Then click

Finish.

10 available O | Rational Team Concert - Developer

I'his Developer lcense 1s designed

ers actively participating in the
Client Access License has full read and

project.
write acce , mization, Planning, Software
Configuration Management, and Automation [Build System). This license also provides
read access to Reguirements Management, Test Management and Design Management
capabilities unless otherwise restricted by role-based process permissions.

__vi. There is no need to create a lifecycle project.

__14. You will now setup the workshop repository.
t’ This step creates a project and uploads data into the Jazz SCM system of
the project, that you will use later in the workshop.

Lab 1 — Setting Up the IBM RTC SDK Page 25

mailto:mydamin@bogus.bad

IBM Software

a. Browse to the folder C: \RTC40Dev\installs\WorkshopSetup. Make sure the folder
exists and contains a file named WorkshopSetup.bat.

Other Operating Systems

A file WorkshopSetup.sh file for Unix operating systems
is shipped with the zip file. You might have to chmod the

file to make it executable.

b. Open the file and review its content. It should look similar to below.

f o
| WarkshopSetup.bat - Notepad . ‘ o e S

File Edit Format Wiew Help

ket JAvA_HOME=. ‘\TeamConcert)jazz'clientieclipse'jdk -
seT PLAIN_JAVA=../PlainlavaaPI

set REPOSITORY="http5://'Ioca'lhost:9443/ccm"
set USERID="myadmin"

set PASSWORD="myadmin”

m

%IAVA_HOMEX\ jre‘bintjava -jar -Djava.ext.dirs=%PLAIN_JAVA%; %IAVA_HOME%/jre/Tib/ext - _

If you followed the instructions above, you should be able to run the WorkshopSetup
without issues. The file sets required information to run the setup such as the

JAVA HOME folder of a JDK, where to find the Plain Java Client Libraries and the login
information for the repository.

By default the JAVA_HOME file points to the JDK shipped with the RTC Eclipse client, if
at all possible use this setting. If not, make sure JAVA_HOME is set to a Java
Development Kit version 1.6 or higher.

JDK Required

The file to launch the workshop setup assumes a JDK
(Java Development Kit). You can not use a JRE. A
compatible JDK is shipped with the Eclipse Client. Make
sure to have a Java with a lib/ext folder.

If your setup is different, edit WorkshopSetup.bat to match your environment.
Dependent on your environment you can choose other options to set the environment
variables in the file. If you change the file save the change before running it.

Make sure to the paths match your setup. E.qg. if you use a different folder for the
workshop, enter the correct path.

_C¢. Run C:\RTC40Dev\installs\WorkshopSetup\WorkshopSetup.bat.

Page 26 IBM Rational Team Concert 4.x Extensibility

IBM Software

Make sure the setup is executed and shows a success and close the shell.

-

BN C:\Windows\system32cmd.exe

workitemsextensionssidesuixWorkitemExtensionzFlugin.java ... Created ...
OK

Extracting File: net.jazz.rtcext.workitem.extensio ruices.classpath 0K
Extracting File: net.j v -workitem.extensio ruicew.project OK
Extracting File: net.j .workitem.extensio Puice\.settings\org.eclip}
se.jdt.core.prefs OK

Exgﬂacting File: net.jazz.rtcext.workitem.extensions._service META—-INF~MANIFEST .H

Extracting File: net.jazz.rtcext.workitem.extensions.servicesbuild.properties OK

File: net.jazz.rtcext.workitem.extensio gervicesplugin.xml OK
File: net.jazz.rtcext.workitem.extensio servicesschemasbuildOnState
0K
File: net.jazz.rtcext.workitem.extensions._servicessreinetijazz\rtoext
~workitemhextension ervicesBuildOnStateChangeParticipant. java
Comparing Change 5
Deliver

Futvarting success
nSuccess

£ “RTC4@DevNinstalls\HorkshopSetup>pausz
3 o e o -

In case of errors, carefully read the error message, check the paths, especially to your
Java JDK and make sure it is available.

Troubleshooting

Check that you are using a JDK, check the paths.

If needed replace the JAVA_HOME statement by your
absolute paths and make sure your paths actually point
to the required folders.

Make sure you have /lib/ext folder.

Make sure the Plain Java Client Libraries are reachable
in the folder you specified.

If this step does not perform successfully, you can not
follow the labs. You can however manually import the
configuration files and the Lab code from the subfolders
in C:\RTC40Dev\installs\WorkshopSetup\data.

__15. Import the 10 Free Developer CALs. The license assignments in the repository will be preserved
(myadmin has a Developer CAL).

a. Locate the RTC-Developer-10-C-License-4.0.zip file and remember where you
placed this file. You will next upload it to your server.

b. Open orreturn to your browser and open this URL:
https://localhost:944 3/jts/admin#action=com.ibm.team.repository.admin.managelicenses

Lab 1 — Setting Up the IBM RTC SDK Page 27

https://localhost:9443/jts/admin#action=com.ibm.team.repository.admin.manageLicenses

IBM Software

-9

When prompted, enter myadmin for both the User ID and Password.

In the Client Access License Types table, click Add...

|CIientAccess License Types | Add... | Edit...

Users on this server can be issued access to the following types of Client Access Licenses. A userthat
has been assigned a Floating license type participates in a pool of users sharing the available Floating
licenses of the same type that are installed on the license server.

Product Variant Type Total Assigned Available Status}

Rational Included-50 Build 50 0 50 @ Active
Team System

Concert

Rational Included ClearCase 10 0 10 @ Active
Team Synchronizer

Mert ' ™ r-’- ' '. T '

In the Upload License Files dialog, use the Browse button to locate the RTC-
Developer-10-C-License-4.0.zip file. The file will be uploaded and the Next
button will activate. Click Next and jazz.net will be contacted to register your free
licenses.

Upload License Files

i The server will contact Jazz.net to register and activate your 10 Free Developer Licenses

Upload License Files

Use the upload form below to add License keys to this server. You may upload multiple keys before
exiting this wizard. These changes can be medified later if needed.

Upload License Activation key: Browse.. |
Pending License Key Uploads

Product Variant Type Version Users Status
Rational Team Concert 10 Free Developer 3.0 10 @ Active

< Back Finish ~ Ccancel

Read the license that is presented then select | accept the terms in the license
agreement. Then, click Finish.

The Client Access License Types table will now show your 10 free Developer CALs in
addition to the trial developer CALs. The other CALs are still in place. In addition, the
assignment of a Developer CAL to the ADMIN id has been upgraded to one of the free
Developer CALs. The trial developer CALs are no longer assignable.

Rational Team Concert 10 Free Developer 10 & Active

Page 28

IBM Rational Team Concert 4.x Extensibility

IBM Software

1.4 Complete Setup of Your RTC Eclipse Client

__16. Return to the RTC Eclipse client you already have running. If you shut it down earlier, start it
again (C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse\eclipse.exe)
using the C: \RTC40Dev\workspaces\Dev1\WS workspace. Also, make sure you are in the
Plug-in Development perspective that you opened earlier.

__17. Connect to the project area.

a. On the left, switch to the Team Artifacts view and click the Accept Team Invitation link.

(8 Pac|% Plu [fe My |EiTea &2 . ¥ Tea| = O
All Project and Team Areas (No Project Areas

= 3 ov | @ G|

You are not connected to a project area.

Accept Team Invitation

Manage Connected Project Areas

Create a Project Area

Create a Repository Connection

First Steps welcome page for review

b. In the Accept Team Invitation wizard, enter the following in the text field and then click
Finish.

teamRepository=https://localhost:9443/ccm/
userld=myadmin

userName=myadmin

projectAreaName=RTC Extension Workshop

Lab 1 — Setting Up the IBM RTC SDK Page 29

IBM Software

__¢. When prompted, make sure myadmin is entered for both the User ID and Password.
Also, check the Save password and Automatically log in check boxes. Then click OK.

& —— B
'\,) Log in Required ﬁ
k% Team Repository: https://localhost:9443/cem/
&= User [D: i myadmin -
Password: sesssss

[¥] Save password
Iy log irs
1, Saved passwords are stored in a file on your

computer. It would be difficult, but not
impossible, for an intruder to read this file,

T

__d. If prompted with a Repository Connection Certificate Problem, select the Accept this
certificate permanently radio button and then click OK.

__e. Close the project area editor that opens.

Page 30 IBM Rational Team Concert 4.x Extensibility

IBM Software

__18. Load the workshop repository workspace.

__a. Inthe Team Artifacts view, expand the My Repository Workspaces node, right click
the RTC Extension Workspace and then select the Load... action from then menu.

i Pac |%Plu [faMy |EiTea &3 ¥ Tea| =0
All Project and Team Areas (1 of 1 areas selected)
s RAR R 12
4 Lo Repository Connections
£ ADMIN@localhost
& RTC Extension Workshop [localhost]
L Favorites
i@ Feeds
< [@ My Repository Workspaces
2 Components
[&l RTC Extension Workspace

& N New v
L&\ Open
Show >

Add to Favorites...

Rename...
¥ Load...
B Unload...

M}Iﬂﬁt\e.&\

b. Inthe Load Repository Workspace wizard, make sure Find and load Eclipse projects
is selected and then click Finish.

c. Verify that there are now four new Eclipse projects in your Package Explorer view. Two
of these projects define the common (net.jazz.rtcext.workitem.extensions.common)
and service (net.jazz.rtcext.workitem.extensions.service) parts of your component
(component in this context will be defined at the top of lab 2). You will use these in
subsequent labs. The third (RTC Extension Workshop Configuration) contains Eclipse
launch configurations. In the rest of this lab you will learn how to use these launches.
The fourth project (RTC Extension Lab Code License) contains the license agreement
for the sample code you are using in this workshop.

d. You will also notice in the Pending Changes view, that there are incoming change sets
and baselines. Do not accept them. You will make use of them in later labs. If the
Pending Changes view is not open, select Window > Show View > Other... from the
menubar, type pending into the filter field and then double click the Pending Changes
entry.

Lab 1 — Setting Up the IBM RTC SDK Page 31

IBM Software

19

_20.

Gather remaining configuration files for Jetty based launches.

a.

The RTC Extension Workshop Configuration project also contains some configuration
files for use by the Jetty based launches. There are two files that need to be included but
are not part of what was just loaded. You will now copy them from your server installation
in order to make sure they match the version of your server and SDK.

The two files you need are services.xml and scr.xml from your server's ccm application
configuration. You will find them in the
C:\RTC40Dev\installs\JazzTeamServer\server\conf\ccm folder.

You can drag or copy them from the Windows Explorer into the conf\jazz folder in the
RTC Extension Workshop Configuration project in the Package Explorer view.

This will give you two unresolved local changes in the Pending Changes view. You do
not need to do anything with these.

Import plugins for Jetty based launches. There are three plugins you will need to import (one
from the RTC SDK and two from your installed server) for use with the Jetty based launches that
you will try out later in this lab.

_a.

First, import the JUnit test plug-in that contains the database creation code. From the
menu bar, select File > Import... and then in the Import wizard, select Plug-in
Development > Plug-ins and Fragments as shown here and then click Next.

<) Import |_ (2] -
Select N

Create projects from plug-ins and fragments in the file system.

Select an import source:
type filter text
& General o
& CVS
& Jazz Source Control
> Plug-in Development =

i Features

%, Plug-ins and Fragments
& Run/Debug
& Team =

@ ich Next > : | Cancel

Page 32

IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. On the second page of the wizard, make sure your selections match those shown here.
The only one you should have to change is highlighted. Then, click Next.

i3 Import Plug-ins and Fragments uﬂlﬂ_hj

Import Plug-ins and Fragments #"I‘F
Create projects from plug-ins and fragments in the file system. =
"

Import From

@ The active target platform (as specified in the Preferences)

(0) Target definition: | RTC SDK Target Definitions...

() Directory: CARTC40Devinstallshric-sdk Browse...

Plug-ins and Fragments to Import
(@) Select from all plug-ins and fragments found at the specified location

(71 Import plug-ins and fragments required by existing workspace plug-ins

Import As
() Binary projects
() Binary projects with linked content

@ Projects with source folders

() Projects from a repository

@ <Back || Net> Finish

Lab 1 — Setting Up the IBM RTC SDK Page 33

IBM Software

On the third page of the wizard, enter common. tests.utils into the ID field. This will
filter the plug-ins list. Select the com.ibm.team.common.tests.utils plug-in in the list,

click Add --> and then click Finish.

) Import Plug-ins and Fragments

Selection

Select plug-ins and fragments to import.

Filter Available Plug-ins and Fragments

ID (* = any string, ? = any character):l common.tests,utils |

el Sl

%

Plug-ins and Fragments Found:

Existing Plug-ins --> | Plug-in

%= com.ibm.team.common.tests.utils (1.0.0.v20101110 22

% com.ibm.team.common.tests.utils.feature.source (1.0.0. -

Existing Unshared --> |

Add >]
AddAl—> |
<-- Remove

q 11 3

[¥]Include fragments when computing required plug-ins

| Show latest version of plug-ins only

@ < Back |

SR
vext >

Finish

<-- Swap --> I
Required Plug-ins

0 out of 2 selected

Cancel

Page 34

IBM Rational Team Concert 4.x Extensibility

IBM Software

d. Next, import the server license from the server installation. This will override the
development time server license you would otherwise be using in a Jetty launch with the
permanent server license. It is likely that the development license has expired. As before,
from the menu bar, select File > Import... and then in the Import wizard, select Plug-in
Development > Plug-ins and Fragments as shown here and then click Next.

3 Import | e) e
Select 5N ﬂ

Create projects from plug-ins and fragments in the file system.

Select an import source:
type filter text
& General
» CVS
& Jazz Source Control
& Plug-in Development

i Features

|'.-:., Plug-ins and Fragments
& Run/Debug
& Team

e f |
@ < Back Next > Finis Cancel

Lab 1 — Setting Up the IBM RTC SDK Page 35

IBM Software

e. This time on the second page of the wizard, make sure your selections match those
shown here and then click Next. The major difference from last time is the selection of a
different place to import from. The Plug-in Location field should be set to (use the
Browse... button to find it):
C:\RTC40Dev\installs\JazzTeamServer\server\conf\jts\sites\license
-update-site

l,) Import Plug-ins and Fragments uﬂ‘ﬂ_hj

Import Plug-ins and Fragments =:-]):
Create projects from plug-ins and fragments in the file system. _qj:j 1“
Import From
() The active target platform (as specified in the Preferences)
() Target definition: |RTC SDK [Target Definitions...]
© Dirctory <[Bowse. |

Plug-ins and Fragments to Import
@ Select from all plug-ins and fragments found at the specified location

() Import plug-ins and fragments required by existing werkspace plug-ins

Imnport As
() Binary projects
() Binary projects with linked content

(@) Projects with source folders

(") Projects from a repository

@ <Back || Next> s

Page 36 IBM Rational Team Concert 4.x Extensibility

f. On the third page of the wizard, select the

IBM Software

com.ibm.team.jazz.foundation.server.licenses.enterprise-ea plug-in in the list. Then

click Add --> and finally click Finish.

() Import Plug-ins and Fragments

|
Selection

Select plug-ins and fragments to import.

Filter Available Plug-ins and Fragments

ID (* = any string, ? = any character):

Plug-ins and Fragments Found:

I Existing Plug-ins -—-> l

Pli

‘\'1*com.ibm.team.jazz.foundation.server.iicenses.enterprise|| —
Existing Unshared -->
Add All -->

Remove
Remove A

<-- Swap -->

€ 1] . »

|# Include fragments when computing required plug-ins

[Show latest version of plug-ins only

@ <Back | Next > Finish

Required Plug-ins -->

0 out of 1 selected L]

Cancel

Lab 1 — Setting Up the IBM RTC SDK

Page 37

IBM Software

__g. Finally, import the client access licenses (CALs) from the server installation. As before,
from the menu bar, select File > Import... and then in the Import wizard, select Plug-in
Development > Plug-ins and Fragments as shown here and then click Next.

Select
E“:.a]
Create projects from plug-ins and fragments in the file system.

Select an import source:

. type filter text

[= General
B CVS
[+ [lJazz Source Control
4 [= Plug-in Development

. Features

=L, Plug-ins and Fragments |

I = Run/Debug
[= Team
[» [~ Team Process

@ [<Back Ne¢> ||| Finish

Page 38 IBM Rational Team Concert 4.x Extensibility

IBM Software

h. This time on the second page of the wizard, make sure your selections match those
shown here and then click Next. The major difference from last time is the selection of a
different place to import from. The Plug-in Location field should be set to (use the
Browse... button to find it):
C:\RTC40Dev\installs\JazzTeamServer\server\conf\jts\sites\clm-
activation.

License File Names Might Change

A The file names might be subject to change in future
releases. If you don't find the files, look out for other
names.

RTC installed from ZIP File

exist. In this case look for the folder:
C:\RTC40DeW\installs\JazzTeamServer\server\conf\jts\sit
es\rtc-standalone-activation

A If you installed the zip version of RTC, this plugin will not

Lab 1 — Setting Up the IBM RTC SDK Page 39

IBM Software

If you can not find any of these folders, you probably forgot to install the “Rational Team
Concert Required Base License Keys, Including Trials” installation package back at step
3.b. You will need to return to the server installation and install this package into the
same package group as your server. You can then return to this step. Later, you will want
to confirm that your myadmin user has a developer CAL.

(.3 Import Plug-ins and Fragments uﬂlﬂ_hj

Import Plug-ins and Fragments =(‘J1):
|
Create projects from plug-ins and fragments in the file system. +
.
Imnport From

() The active target platform (as specified in the Preferences)

() Target definition: | RTC SDK [Target Definitions...]

(@ Directory: riserver,confijtsisitesiclm-activation i [Browsze...]

Plug-ins and Fragments to Import
(@ Select from all plug-ins and fragments found at the specified location

(") Import plug-ins and fragments required by existing workspace plug-ins

Import As
() Binary projects
() Binary projects with linked content

(@ Projects with source folders

() Projects from a repository

@ <Back || Ned> Finish

Page 40 IBM Rational Team Concert 4.x Extensibility

IBM Software

i. On the third page of the wizard, select the com.ibm.team.licensing.product.clm plug-
in in the list.

In case you installed the RTC standalone ZIP version choose

com.ibm.team.licensing.product.rtc-standalone.
Then click Add --> and finally click Finish.

i ™

Selection -Q):

Select plug-ins and fragments to import. ‘@“
-

Filter fvailable Plug-ins and Fragments

ID (* = any string, ¥ = any character):

Plug-ins and Fragments Found: T z
[Existing Plug-ins --»

|FID= com.ibr.tearn.licensing.product.clm [U.Q.Qj!l

[Existing Unshared --»

)
|
[Add -->]
)

| AddAll-->

<-- Remove

<-- Remowe All

[¥] Include fragments when computing required plug-ins
Show latest version of plug-ins only

© o> [

Lab 1 — Setting Up the IBM RTC SDK Page 41

IBM Software

__21. Import a feature to make launching the RTC Eclipse client much easier. In the simple zip file
installation of the RTC Eclipse client, there is an umbrella feature that includes all the RTC
Eclipse client features. This feature is not in a client installed via Installation Manager nor is it in
the RTC SDK. It is, however, very convenient for launching a RTC Eclipse client for debug.

__a. From the menu bar, select File > Import... and then in the Import wizard, select Plug-in
Development > Features as shown here and then click Next.

Select

Create projects from features in the file system.

Select an import source:

type filter text

s+ = General
b B CVS
» [lazz Source Control
4 [= Plug-in Developrment
=T Plug-ins and Fragments
> (= Run/Debug
I+ = Team
» [Team Process

Page 42 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. On the second page of the wizard
i. Deselect the Choose from features in the target platform checkbox.

__ii. The Feature Location field should be set to (use the Browse... button to find it):
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse.

__iii. Click Deselect All.

__iv. Type rtc.clien to narrow down the selection. Scroll down the list to the
com.ibm.team.rtc.client.feature and check it.

i) Import Features l 5] |G
Import Features = J:,—
Create projects from features in the file system.
-

[7] Choose from features in the target platform
Feature Location: \RTC40Dewiinstalls\TearmConcert\jazz\client\eclipse - Browse...

[EEET]

[¥] % com.ibm.team.rc.client.feature (4.0.0.RTC-120120531-1745) |

233 of 233 selected. Select All | | Deselect Al

| [V Import as binary projects

@ Next > Finish | [Cancel

L

_ V. Click Finish.

Lab 1 — Setting Up the IBM RTC SDK Page 43

IBM Software

1.5 Test connecting the Eclipse debugger to Tomcat

__22. Set a breakpoint to be used to verify the debugging connection.

a. Inyour RTC Eclipse client (in the Plug-in Development perspective you opened earlier),
select Navigate > Open Type... from the menu bar.

b. Inthe Open Type dialog type *active*ser in the pattern field. Several types will
appear (depending on the version). Select the ActiveServiceDTO interface as shown
here and then click OK.

«/Open Type =1
Enter type name prefix or pattern (*, 7, or camel case): -

Matching items:

|&8 ActiveServiceDTO - com, lbm.team. repository.service, internal, dho |
9 activeServiceDTOImpl

@ ActiveServicelnfoDTO

® activeServicelnfoDTOImp

] 2]

cam. ibrm. team.repository. service. in., 00912110451 epository_service. jar

@ | ok ||| cancel |

__c¢. When the Java editor opens on the class, the class name will be highlighted. Right click
the class name and select References > Workspace.

Tk ActiveServiceDTO class &3 =0
* oo, ibmw. team. repository. service. internal . dto. DtoFPackagefget Aot A
* annotation="team lass dhPersistabhle='false'"™ |
W
x

public interface IActivEServiceDTOI £
ST Cpen Declaration F3

* Returns the Open Type Hierarchy F4 bhx</ewm>' atcribute.

: :;;_ begin- Open Call Hierarchy Clri+aAl+H

* If the mesa Shaw in Breadcrumb - Alt+Shift+B pttribute isn't clear,

* there real. Quick Cutline Ciri+O ion here...

*ooipy Quick Type Hierarchy Cirl+T

* o¢l-— end-w Show In Alt+ShiftHa »

* th ' attribute.

* #izsSer

® #unsel Copy Qualified Mame

* Hzet s

* com. 1} Refactor Alt+Shift+T ¥ rnal.dto. DtoPackagefige

: YRS peferences * | | Workspace Cir [+Shift+G
E Declarations * L) Project

Page 44 IBM Rational Team Concert 4.x Extensibility

IBM Software

__d. Thefirst entry in the Search results view is the one you want. Double click the
ServerStatusRestService class to open an editor on it.

= Tasks | |2 Problems | < Search 3 =g
44| R % BB =80 e s R .

'corn.ibm.team.repository.service. internal dio. ActiveServiceDTO' - 47 references in
wotkspace (ho IRE) (0 matches filkered from view)

com.ibm. tleam.repository. service.internal - repository_service, jar - D:HRT_A:
@ |ServerStatusRestService (1 match)
corm. ibm.tearm.repository, service, internal.dbo - repository_service jar - D
com.ibm. leam.repository, service. internal.dio.impl - repository_service. ja
corn. b tearm. repository service, internal.dio,util - repository_service, jar

com. ibm. tearmn.repository, service. tests. internal - team reno dbtests,iar Y
L4 b

88 HE e B

__e. The Outline view now shows the structure of the ServerStatusRestService class. In the
Outline view, click the getActiveServicelnfo() method.

2= Qutline & AR e w =0

>

= addServicesFromExtensionServiceRegistry(Map <Stri
= addServicesFromServiceProviders(Map <String, Com
= getComponentDto(Map <String, ComponentDTO >,
m estimateHashedCollectionSize{int) : int

m findServiceByInterface(ComponentDTO, String) : Ser
buildComponentDTO({IComponentElementDescriptc
. getServiceStatus(ParamsSinglelnterfaceName) : Stati
m fetchServiceStatus(String) : StatusDTO

@ getActiveServicelnfo() : ActiveServiceInfoDTO
renderThreadStack(Thread) : String

& postStatusForServices(ParamsServiceNames) : Statu:
checkVM() : String

¥ T _f N i L S . S

p ' i >

m

f. The editor is now showing the getActiveServicelnfo() method. Set a breakpoint on the
first line of the method. Right click in the shaded area to the left of the first line to get the
menu.

Production Code Might Change

The screen shot below is from the 4.0 SDK. In newer
versions the code might look different from the screen
shot below.

Lab 1 — Setting Up the IBM RTC SDK Page 45

IBM Software

T ActiveServiceDTO. class

Rn"n' Serwvicehatall =

Tus ServerStatusRestService.class &3

=-public ALctivelervicelInfoDTD getlActivelervicelnfol()

i

prvices = Executingl3erviceMonito

Tl

@ Toggle Breakpoint

Shiow Line MNurmbers
Folding

a1

Preferences...

infobto = DtoFactory. eINSTANCE.
ime (System. currentTimeMillis ()) ;

oy Ny

1 gervice gervices) | |
gerwvicelto = DtDFactDrg.eINSEANC'
=thod (zervice.getMethod () . getName
=rvice (service. getiervice (]!

e

artTime (service.getitartTime ()]

¥

S Winfnﬂ)tn H
T """‘—‘-’\'\. «..,*—m..._’* ey

Attach the Eclipse debugger to the RTC server.

23

_a

Hs]o- - i

Debug As

servicelto.sert3tackerace (renderThread3tack (servi
servicelto.setUserIdiservice.getUserId(]):
infobto.get3ervices () .add (servicelta) ;

Debug Configurations. ..

Organize Favarites...

s ¥

e

e

From the Debug toolbar icon dropdown select Debug Configurations...

Page 46

IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe Debug Configurations dialog, expand the Remote Java Application launch
type, select the [RTCExt] Debug Running Tomcat launch configuration and then click
Debug. If you had to use a different debug port when starting Tomcat, adjust the Port
value here before debugging. Also note that if you switch to the Common tab that the
Save as location is set to inside one of the projects you loaded (\RTC Extension
Workshop Configuration\launches). This will be true for all the launches you use with this
workshop. You may also notices some other launches that start with [Standard]. These
come from the test plugin you imported from the RTC SDK. You will not use them in this

workshop.
.,3 Debug Configurations &
| Create, manage, and run configurations \@)\

Attach to a Java virtual machine accepting debug connections

T IEE
. Name: [RTCExt] Debug Running Torncat|
type filter text
3 % s
@ Edlipse Application Connect . % Source| = Common
@ Eclipse? Application Project: .
¥ Java Applet External Plug-in Libraries | Browse... |
; Ja\.ra_ BppiERion Connection Type:
Ju JUnit
% JUnit Plug-in Test Standard (Socket Attach) Z
JUnit* Launch Connection Properties:
05Gi Framework Host: localhost
QSGi? Launch
ki o Port: 3388
%, Remote Java Application
Z, [RTCExt] Debug Running Tomcat Allow termination of remote VM
Filter matched 13 of 14 items
? I Dabug J : Close

__24. Use the RTC Web Ul to trigger the breakpoint.

__a. Open your browser (if it is not already open) and enter the URL
https://localhost:9443/ccm/admin.

__b. If prompted, login with myadmin as both User ID and Password.

Lab 1 — Setting Up the IBM RTC SDK Page 47

https://localhost:9443/ccm/admin

IBM Software

__c¢. When the Status Summary page appears, click the Active Services link on the left.

@ Status Summary - Rational Jazz Team Server - Mozilla Firefox: IBM

File Edit View History Bookmarks Tools Help

@ = C 7 AONANER https://localhost:9443/ccm/ad

2, Most Visited| | Jazz | Feeds % Index of /~wasleski/pub... £ Fack
(2 Status Summary - Ratio...| * ‘

Change and Configuration Managemen)
_ i& Application Administration

Application Users Project Areas Templates Reports

E=iih Status
Status Summary Status Summary

Statistics

Application Status
Component Status

Database Status Connected

Uptime 1 hour, 36 minuteg

Public URI hitps:Mocalhost 94

__d. The breakpoint will trigger and the RTC Eclipse client should come to the foreground (or
flash in the Windows taskbar if minimized). If you are prompted to switch to the Debug
perspective, click the Remember my decision checkbox if you wish, and then click Yes.

-,

) Confirm Perspective Switch E

. % 4 This kind of launch is canfigured ta open the Debug perspective when it
\-',/ suspends.

This Debug perspective is designed o support application debugging. It

incorporates views for displaying the debug stack, varisbles and breakpoint
management,

Do you want to open this perspective now?

|Remember my decision

fies l [o u]

Page 48 IBM Rational Team Concert 4.x Extensibility

IBM Software

__e. You will now be in the Debug perspective stopped at the breakpoint you set earlier.

«/Debug - com.ibm.team.repository.service.internal.ServerSta.
Mavigate Search Project Run Window Help ‘

File Edit Source Refactor
LG i E-® @ 0@ @ P[P
%5 Debug &2 -3 [O U T Y 7 0| 6= vari
& Daemon Thread [hitp-9443-Processor13] (Running) A Mame
& Daemon Thread [hitp-9443-Processor15] (Running)
#® Daemon Thread [htp-9443-Processor17] (Running) '
& Daemon Thread [hitp-9443-Processor19] (Running) L
< | /

=-f® Daemon Thread [htp-9443-Processor22] (Suspended (breakpoint at

= ServerStatusRestService.getactiveServicelnfo) line: 260
= MativeMethodaccessarlmpl.invokeOMethod, Object, Chiect[]) ling |

<] 2]

Thib ActiveServiceDTO.class Inb ServerstatisRestService.class 53 by

o public ActivelerviceInfoDTO getlhctivelServiceInfol()l | ,

», Footlervicelatal[] serwvices = ExecutinglerviceMonitor. getl
AoetiveServiceInfoDTO infolto = DtoFactory. eINSTANCE.create
infolto.setCurrentTime (Syatem. currentTimeMillis ()] ; ’
for [(RootServiceData service @ serwvices) |

\2'.> X ‘\ Aotd rviceDlTO serviceDt.D,.kboFac ory. eTHETANCE ,

" - - \-H“‘\"E‘-‘ih’-“‘“ 3

__f. Click the Resume toolbar button to resume execution of the server.

./ Debug - com.ibm+team.repository.servicejnternf
File Edit Source Refactor Mavigate Search Project Run Window I?

G E-® @ %0 G 8

s LJd

%5 Debug 52 3T R =Y
Daernon Thread [htp- 9 13] {Running}
#® Daemon Thread [htip-9443-Processor15] (Running)
#® Daemon Thread [htip-9443-Processor17] (Runmn
"\‘—M

‘ @ peawse T [t g prasandiagiia g™

Return to your browser and note that the Active Services page is now showing. Close

-9
your browser window.

Lab 1 — Setting Up the IBM RTC SDK Page 49

IBM Software

h. Disconnect the debugger from the running Tomcat server by clicking the Disconnect
toolbar button.

-

() Debug - com.ibm.team.repository.service.internal ServerStatusRestSe

File Edit Source Refactor MNavigate Search Project Run Windo
il 4 Ev@ By Hvy0OvQv P~ F

#* Debug 0o |

4 IZ [RTCExt] Debug Running Tomcat [Remote Java Application]
4 |52 IBM J9 VM[localhost:3388]

1.6 Test the Jetty Based Server Launch

As mentioned earlier, you will now launch the server from Eclipse under
Jetty. This will use a separate repository database than the Tomcat server.

You will also use separate ports. This will give you a development test

environment that is separate from your Tomcat test environment.

Testing with Jetty has a couple advantages:
- Faster server startup to debug
o - Faster code, debug and fix cycle including hot code replace
The primary disadvantage is that this launch runs the server as one ap-
plication at the “\jazz” context root and not as separate JTS and CCM ap-

plications. This is generally fine for development and you do have the
Tomcat server with split applications for final testing.

__25. Create the development time repository database. Note that this process will create a “server”
folder as a sibling of your Eclipse workspace. The database and eventually its indexes will be
contained within this folder. If you ever want to delete the database and indexes and recreate
them, you can simple delete the server folder and rerun this process.

a. The database creation test you are about to run uses a Jetty server during initialization of
the database. Unfortunately, that server must run at the same ports as the Tomcat server
you currently have running. You will need to temporarily stop the Tomcat server. You will
be able to restart it after the database is created. This will not be a problem when running
your Jetty test server. It and the Tomcat server will use different ports. So, return to the
Windows Explorer and navigate to
C:\RTC40Dev\installs\JazzTeamServer\server and run the
server.shutdown.bat file. Wait for the server to stop and then proceed with the next
step.

Page 50 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. Select Run Configurations... from the dropdown menu off the Run toolbar icon.

ovla~ dwe~vr &<
(no launch history) i

Run As r |
| Run Configurations...

Organize Favorites...

c. On the Run Configurations dialog, select JUnit? Launch > [RTCExt] Create RTC Test
Database and then click Run. Note that if you switch to the Bundles tab, you will see
that three of the bundles you imported earlier (the test bundle that creates the database
and the licenses) are included in this launch. You will learn about adding your own
bundles to launches in subsequent labs.

) Run Configurations " HH
Create, manage, and run configurations { _."\i

Create a configuration to launch JUnit Plugin tests in run mode,

Name: [RTCExt] Create RTC Test Database
type filter text

Edipse Application i Test ¥ Bundles Tl Main & Configuration| ™

@ Edlipse? Application @ Run a single test |
El Java Applet Project: com.ibm.team.common.tests.utils |
I Java Application
it PP Test class: com.ibm.team.common.tests.utils.AllTes I
Ju JUni
Jv JUnit Plug-in Test

« @ JUni? Launch Run all tests in the selected project, package or source {

| # (RTCExt] Create RTC Test Database
@ [Standard] Create Test Database
0SG6i Framework
OSGI* Launch

Test unner: | JUnit 3 =

Keep JUnit running after a test run when debugging

Filter matched 16 of 16 items

Run . Close

Lab 1 — Setting Up the IBM RTC SDK Page 51

IBM Software

d. This may take a while to run. The Console view will appear and show quite a bit of
output. The JUnit view will also be active. When the database creation is complete, the
JUnit view will show success. Note that the Console view will show some exceptions.
The important thing is that the JUnit view shows success. If it fails, make sure you have
shut down RTC and retry until it succeeds.

v= Tasks |21 Problems | 4" Search | gu Junit 52 El console -
Finished after 280.64 seconds gt ’
Runs: 343 B Errars: 0 B Failures: 0 !

=N §|:|:|m.ihm.team.repn:uaih:urﬁ,r.aervice.tests.ﬁIITeatECreateDE- [Runmer: 1 = F'
+-He] com.ibm.team repository, service. tests, TestDbRebuild (277,275) ?
+-He| com.ibm.team.repository, service. tests, TestDbInit (2,453 53
+-He] com.ibm.team.repository. service. tests, CreateTestUsers (0,750 =)

e. You can now restart your Tomcat server. Return to the Windows Explorer and navigate to
C:\RTC40Dev\installs\JazzTeamServer\server and run the server.startup.bat
file.

__26. Launch the Jetty server for debug.

__a. Select Debug Configurations... from the dropdown menu off the Debug toolbar icon.

sFlova~y E#ey &5~
% 1 [RTCExt] Create RTC Test Database

=

% 2 [RTCExt] Debug Running Tomcat

Debug As ’
Debug Configurations...

Organize Favorites...

Page 52 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe Debug Configurations dialog, select 0SGi? Launch > [RTCExt] Jetty RTC
Server and then click Debug. Note that on this Bundles tab, that two of the bundles you
imported earlier (the licenses) are included in this launch. You will learn about adding
your own bundles to launches in subsequent labs. Also notice the list of System
Properties. Many of these will be familiar to you if you have ever administered a Jazz
server (location of the repository, index locations, public URL, etc). There are also two
Jetty properties for setting the ports. The primary port you will used with this server is
7443 rather than 9443.

') Debug Configurations ﬁ

3 - ¢ ="
Create, manage, and run configurations *@\

Create a configuration to launch an QSGi application in debug mode.

X EH~
Name: [RTCExt] Jetty RTC Server
type filter text
“ Bundles . [~ Settings & Tracing ™ Environment| ™

|

|| @ Edipse Application -

|| @ Edipse? Application Actions ¥ |3 Filter

|| EE Java Applet Add a Feature or Bundle to this launch. -
I Java Application Import from or compare with bundles in another E
o JUnit = || |launch
Ju JUnit Plug-in Test ~ 6 Fealures (82 including required/nested)

JUnit? Launch
| % 05Gi Framework
+ # 0SGi* Launch
[RTCExt] Jetty RTC Server &
M # [Standard] Compatibility - Vet jazz ajax.app jfs.feature
[Standard] Compatibility - ~ ¥'com.ibm.team ricupdate site.contentric feature ~
] 11 »

Fcom.ibm.team jazz.foundation.web.feature

¥ com.ibm.team.repository.web.jfs.feature

% ‘net.jazz.ajax.jfs.feature

|
| | Filter matched 18 of 18 items

N @ Debug | Close

" _ E— L_1

c. Switch to the Console view. Log messages will appear indicating that the Jetty server
has started. You might see Framework Manager exceptions. These can be ignored.

| Tasks |[Z: Problems | 4 Pending Changes |+ Search |dgv JUnit E Console

[RTCExt] Jetty RTC Server [0SGi® Launch] C:\RTC30Dewinstalls\TeamConce
2011-02-02 16:59:58.022::INFO: Logging to STDERR
2011-02-02 16:59:58.272::INFO: Jetty-6.l.x
2011-02-02 16:59:58.676::INFO: Started SocketCon
2011-02-02 16:59:59.285::INFO: Started SslSocke

Lab 1 — Setting Up the IBM RTC SDK Page 53

IBM Software

27,

28

Connect with your browser.

a.

Start your browser and navigate to this URL:
https://localhost:7443/jazz/admin. You may need to add another security

exception (note that the port is different).

Log in with TestJazzAdminl as both the User ID and Password. For this workshop we
will use the myadmin user for the Tomcat server and this other administrator id for the
Jetty launched server. This will hopefully make things a little less confusing in that it will
be more clear as to which server is being used. This new administrator id was created
along with the database you created earlier. There are several other ids that were
created then too.

If you switch back to your RTC Eclipse client, you will now notice many more log
messages in the Console view. These will include entries about a successful connection
to the repository database you created earlier. Dependent o

Activate the Licenses. In the 4.0 products you need to activate the trial licenses to be able to use
them. You will now perform this step in the Jazz Team Server Administration pages. In newer
versions the developer trial licenses are already activated. And you can continue after verifying
the fact.

a.

Navigate to the License Key Management page at

https://localhost:7443/jazz/admin#action=com.ibm.team.repository.admin.manageLicens
es

Find the trial license entry for “Rational Team Concert 4.0 Developer” and activate the
trial license.

Client Access License Types

Users on this server can be issued access to the following types of Client Access Licenses. Auserthat has been assigned a Floating license type participates inap
the available Floating licenses of the same type that are installed on the license server.

Product Version Type Variant Total Assigned Available Status

Rational Team Concert 4.0 Cleartuest synchronizer Tincluded 1 u 1T @ Active

Activate Trial

| activate Trial |

Ac[i-l Activate Trial |

Activate Trial

Page 54

IBM Rational Team Concert 4.x Extensibility

https://localhost:7443/jazz/admin#action=com.ibm.team.repository.admin.manageLicenses
https://localhost:7443/jazz/admin#action=com.ibm.team.repository.admin.manageLicenses
https://localhost:7443/jazz/admin#action=jazz.viewPage&id=com.ibm.team.repository.server
https://localhost:7443/jazz/admin
https://localhost:7443/jazz/admin
https://localhost:7443/jazz/admin

IBM Software

__29. Trigger the breakpoint set earlier.

__a. Click the Jazz Team Server - Server Administration link under Manage the Server.

@ Home - Rational Jazz Team Server - Mozilla Firefox: IBM Edition

File Edit View History Bookmarks Tools Help
@ - C LA https:fflocalh05t:7443fjazz,fadmin'
£ Most Visited‘ |/ Jazz | Feeds ® Index of /~wasleski/pub... < Face

) Home - Rational Jazz T... | * ‘

Change and Configuration Managemen
@ i& Server Administration

Home Server Users Project/

Welcome to the Jazz Team Server Ad

Jazz Team Server Administration

Manage the server
Configure the Jazz Team Server settings, install and manage licen

| Jazz Team Server - Server Administration

__b. As before, click the Active Services link on the left.

@ Status Summary - Rational Jazz Team Server - Mozilla Firefox: IBM

File Edit View History Bookmarks Tools Help
@ #- C X i https:ffl0ca|h05t:7443fjazz,fadminQ
2 Most Visited‘ I Jazz | Feeds % Index of /~wasleski/pub... £ Faces

J Status Summary - Rati

Change and Configu

* |

* Status

. Status Summary

Status Summary

Statistics
Server Status
Component Status
Database Status Connected

Active Services

Uptime 27 migutes

Lab 1 — Setting Up the IBM RTC SDK Page 55

IBM Software

c. The breakpoint will trigger and the RTC Eclipse client should come to the foreground or
flash in the Windows taskbar. If you are prompted to switch to the Debug perspective,
click the Remember my decision checkbox if you wish, and then click Yes.

.’ Confirm Perspective Switch

9 ; This kind of launch is configured to open the Debug perspective when it
{/ suspends,

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, varisbles and breakpoint

management,

Do you want 1o open this perspective now?

| Remmember my decision

e JL o]

d. You will now be in the Debug perspective stopped at the breakpoint you set earlier.

./Debug - com.ibm.team.repository.service.internal.ServerSta.
File Edit Source Refactor Mavigate Search Project Run Window Help

-l B-@ i@ $-0-% @9 Pl4E

35 Debug 52 Ol P S B = T O |69 vari

@ Daermon Thread [hifp-94423-Processorl2] (Running) || Marne
2 Daemon Thread [htp-9443-Processor15] (Running)
¥ Dasmon Thread [http-9443-Processor17] (Running)
8 Dasmon Thread [htp-9443-Processor19] (Running)
= Daemon Thread [hip-9443-Processor22] (Suspended (breakpoint at
= ServerStatusRestSeryice. getactiveServiceInfo () line: 260
= MativeMethodaccessorImpl. invokel(Method, Object, Object[T) ling s

‘&f\‘

L4 >

Ty ActiveServiceD TO.Class Tub ServerStatusRestService.class &2

o public ActiveServiceInfolTO getlActivelServicelInfol) |

» RootServicelbatal] serwvices = ExecutingServiceMonitor. et

LetiveS3erviceInfolTO infolto = DtoFactory. eINSTANCE.create
infolto.setCurrentTime (3vatem. current TimeMi1111s()); ’

for [(Rootl3erwvicelata serwvice @ serwvices) |
‘\ W}y&f&rv1ceDTO serv1ceDt..D'.R;DFac ory. e THETANCE. ¢

a7 . M-&-—-‘.-._

Make sure to remove all terminated launches to have a better overview
about what runs.

Make sure not to run several server instances in parallel. They will have
conflicting ports so one instance will not run. If the system does not
behave as expected, please check how many instances run. You can stop
all debug sessions and start again, making sure only one is launched.

Page 56 IBM Rational Team Concert 4.x Extensibility

IBM Software

__e. Click the Resume toolbar button to resume execution of the server.

o

.’Debug - com.ibm.team.repository.service.interna"
File Edit Source Refactor Mavigate Search Project Run Window He

O - Q?@'@i'iﬁ'ﬁ'%'ifgﬁ;"if{
% Debug &2 Ok F S =
#2 Daemaon Thread [hip- glResume {FB}iIB] {Running)

¥ Daemon Thread [htp-9443-Processor1S] (Running)
pﬁ‘ Daemon Thread [http 0443-Processorl?] {Runr‘nn
‘“‘-—M

__30. Complete the test.

a. Return to your browser and note that the Active Services page is now showing. Close
your browser window.

b. You can now return to the RTC Eclipse client and terminate the server by clicking the
Terminate toolbar icon in the Debug view as shown here or in the Console view.

ra

/Debug - com.ibm.team.repository.service. interfJ

File Edit Source Refactor Mavigate Search Project Run Window 3
i EIE}'@Evﬁﬁvﬂv%vg@g’“v,
%5 Debug &2 0o =
& Thread [SslListener1-2] (Running) '
@ Thread [SsiListener 1-3] (Running’ '

¥ Thread [SsiListener1-1] (Running’

p® Thread [Acceptor [SSL: SErverSDcket[addr:D.D.D.DID.D.D.D,pDrt’
¥ Daemon Thread [CommonCache Scrubber] (Running f
¥ Thread [Wiorker-07 (Running

@ Daernon Thread [derby.antiGC] (Running)

5. ‘f {Jae ?n Th:ﬂqunmng}

\-\..

Lab 1 — Setting Up the IBM RTC SDK Page 57

IBM Software

1.7 Test the RTC Eclipse Client Launch

Up to this point you have only been debugging RTC servers. You will
sometimes want to extend and debug RTC Eclipse clients too. You will
test a launch for that in this section.

__31. Launch the RTC Eclipse client under debug.

__a. Select Debug Configurations... from the dropdown menu off the Debug toolbar icon.

pr]lOr Q> EEHE G~ &5~
1 [RTCExt] Jetty RTC Server

¥ 2 [RTCExt] Create RTC Test Database
2. 3 [RTCExt] Debug Running Tomcat

Debug As 4
Debug Configurations...

Organize Favorites...

Page 58 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe Debug Configurations dialog, select Eclipse? Application > [RTCExt] RTC
Eclipse Client and then click Debug. Note that on this Bundles tab, that the feature you
imported earlier (the RTC client feature) is included in this launch. If you switch to the
Main tab, you will notice two important settings.

i. First, the launch is configured to prompt you to see if you want to clear the
Eclipse workspace being used by the launched client (not the one you are in now)
before launching. Usually you will answer no (and you can change the settings to
not clear at all if you wish) but occasionally you will find it useful. You will not see
the prompt for clearing the workspace the first time you use this launch since the
workspace does not yet exist.

__ii. Second, the product being launched is the com.ibm.team.concert.product.

() Debug Configurations ﬁ

Create, manage, and run configurations ﬁ\

Create a configuration to launch an Eclipse application in debug mode.

5 x :'\ -
Name: [RTCExt] RTC Eclipse Client
type filter text

@ Eclipse Application % Bundles . C| Main & Configuration & Tracing ™

« @ Edlipse’ Application Actions ¥ [3¢ Filter

@ [RTCExt] RTC Edlipse Client| | Add a Feature or Bundle to this launch. =
= Java Applet Import from or compare with bundles in another
51 Java Application launch =
Ju JUnit * 1 Fealure (202 including required/nested)

Ji JUnit Plug-in Test
JUnit? Launch
4 0SGi Framework
0SGi* Launch
=, Remote Java Application * Program Arguments S

Fcom.ibm.team.rtc.client.feature
Add a Feature

~No Selected Bundles (444 induding required)

Filter matched 18 of 18 items s Re)

Debug Close

__32. The RTC Eclipse client will launch and you can use it as you normally would.
__a. Ifyou hit a client side breakpoint, your original RTC Eclipse client will surface to handle
the debugging.

b. If you launch one of your servers under debug as before, you can create repository
connections from your launched client to your launched server and debug both sides of
your connection.

Lab 1 — Setting Up the IBM RTC SDK Page 59

IBM Software

_33. Close the RTC Eclipse client you just launched under debug.

__34. Shutdown unless proceeding to lab 2.

__a. Close your RTC Eclipse client (the original one where you loaded code from the RTC
server running under Tomcat).

b. Return to the Windows Explorer and navigate to
C:\RTC40Dev\installs\JazzTeamServer\server and run the
server.shutdown.bat file.

You have completed lab 1. You now have a complete develop and debug
environment for extending RTC. You have several launch configurations
(they can be used for run in addition to debug) which you can use as
templates for other launches. You will do some of that in upcoming labs.

Page 60 IBM Rational Team Concert 4.x Extensibility

IBM Software

Lab 2

21

Create a Simple Build on State Change Operation
Participant

Lab Scenario

You have been assigned to create a new work item save operation
participant (or follow-up action). When a Story is changed to the
Implemented state, the project’s integration build will be run. If the build
can not be started, the work item save is stopped.

Note that that follow-up actions run after an operation. There is a similar
construct that runs before an operation called an operation advisor (or
precondition). They use a different extension point and implement a
different interface but are constructed in the same manner.

If your RTC server is not running, start it now (C: \RTC40Dev\in-
stalls\JazzTeamServer\server\server.startup.bat).

Create a Basic

As part of creating this operation participant, you will also be creating a
new Jazz component. It is sometimes possible to create a participant
without creating a new component, however; in this case, you will need a
component because:

- the participant will be requesting services from other components,
- therefore, the participant must declare dependency on those
other components, and

- in order to declare the dependency, the participant itself must be
part of a component.

Components generally have 5 parts (each implemented as an Eclipse
plug-in project):
- Common — contains interfaces, constants, etc that are common to
both the client and server
- Service — contains the server side service implementations
- Client library — contains the client side libraries — these are Java
api that can be used in plain Java applications outside the OSGi
environment in which Jazz clients and servers typically run.
- Rich client Ul — Eclipse or Visual Studio Ul components
- Web Ul — Extensions to the Jazz web Ul for the component

None of these are strictly required to make a Jazz component. In this
workshop there will be common, service and rich client Ul (Eclipse) plug-
ins. For more information on the architecture of a Jazz component see:
http://jazz.net/library/Learnltem.jsp?href=content/docs/platform-
overview/index.html. For information on how to create more complex com-

ponents, see: http://jazz.net/wiki/bin/view/Main/ComponentDevelopment.

Server Side Service

Note: dependent on the version of RTC you are using, you might see
warnings on some of the API classes used e.g.

Discouraged access: The type ITeamBuildService is not
accessible due to restriction on required library

Lab 2 — Create a Simple Participant Page 61

http://jazz.net/wiki/bin/view/Main/ComponentDevelopment
http://jazz.net/library/LearnItem.jsp?href=content/docs/platform-overview/index.html
http://jazz.net/library/LearnItem.jsp?href=content/docs/platform-overview/index.html

IBM Software

C:\RTC406DeV\installs\rtc-
sdk\plugins\com.ibm.team.build.common_3.1.700.v20140116_03
09.jar

You can ignore this warnings.

__35. If your RTC development environment is not open, navigate to
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse in the Windows explorer
and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one
you created in lab one. If you are in a classroom environment where lab one was done for you,
select the Eclipse workspace as directed by your instructor. If the Plug-in Development
perspective is not open, open it now by selecting Window > Open Perspective > Other... >
Plug-in Development from the menu bar.

__36. Return to the lab two code.

__a. Inlab one, you loaded a repository workspace. Along with the launches that you used in
lab one, this also loaded the lab two code. Return to the Package Explorer view. Verify
that the two projects that define the common
(net.jazz.rtcext.workitem.extensions.common) and service
(net.jazz.rtcext.workitem.extensions.service) parts of your component are present. In
the rest of this lab you will learn about the various parts of this initially simple participant.

b. You will also notice in the Pending Changes view, that there are incoming change sets
and baselines. Do not accept them. You will make use of them in later labs. If the
Pending Changes view is not open, select Window > Show View > Other... from the
menubar, type pending into the filter field and then double click the Pending Changes
entry.

__37. Understanding the common plug-in Eclipse project.

a. If you are just creating operation participants, the common project is usually pretty
simple. It defines the component and other items (constants in this case) that are needed
by both the server and client side portions of your component. At this time, you only have
the server side portion, so the common project is not strictly needed, but in a future lab,
you will add the client side portion.

b. In the Package Explorer view, expand the tree for the common project
(net.jazz.rtcext.workitem.extensions.common) and double click the plugin.xml file.
The editor that opens presents information from not only the plugin.xml file but also the
build.properties and META-INF/MANIFEST.MF files. The content reflects standard
Eclipse plug-in practices, for example, including qualifier as the last element of the
plug-in Version on the Overview tab (see
http://help.eclipse.org/helios/topic/org.eclipse.pde.doc.user/tasks/pde_version_qualifiers.
htm).

Page 62 IBM Rational Team Concert 4.x Extensibility

http://help.eclipse.org/helios/topic/org.eclipse.pde.doc.user/tasks/pde_version_qualifiers.htm
http://help.eclipse.org/helios/topic/org.eclipse.pde.doc.user/tasks/pde_version_qualifiers.htm

IBM Software

__c. The most interesting part for your purposes is found on the Extensions tab. There is an
instance of the com.ibm.team.repository.common.components extension point. It
uses the id net.jazz.rtcext.workitem.extensions and the name RTC
Extensions Workshop Workitem Extensions. This entry defines your
component. Since it uses a repository common extension point, this plug-in also declares

a dependency on the com. ibm. team. repository.common plug-in on the
Dependencies tab.

4t net. jazz. ricext.workitern.extensions.cammaon E2

% Extensions

All Extensions L= Extension Element Details

Define extensions for this plug-in in the following section. Set the properties of "component”. Required

fields are denoted by "*",

type filter text
id*: net. jazz.ricext.workitem. extensions
= |=;== com.ibm.team.reposih:ry.common.components' hame™: | RTC Extensions wWorkshon Warkiter
x| RTC Extensions Workshop Workitermn Extens [Remove]] P
< >

Overview |Dependencies RuntimeExtensiDn Paoints | Build | MANIFEST.MF | plugin.xml | build. properties

__d. Backin the Package Explorer view, expand the
src/net.jazz.rtcext.workitem.extensions.common source package and then double

click the IComponentDefinitions.java file. This file contains constants that pertain to the
component as a whole. In this case there is just a constant for the component’s id.

/**
* The component id is used to identify the component to Jazz. It is also

* used by service definitions to identify which component they belong to.
x/

public static String COMPONENT ID ="net.jazz.rtcext.workitem.extensions";

Lab 2 — Create a Simple Participant Page 63

IBM Software

e. Once again in the Package Explorer view, in the same package, double click the
IBuildOnStateChangeDefinitions.java file. This file contains constants that are
particular to the build on state change participant. Right now, it contains just the id for the
participant. This will change in future labs.

/**

* The extension id is used to identify the operation participant to Jazz.

* It is also included in instantiations of the participant in process

* definitions.

*/

public static String EXTENSION ID =
"net.jazz.rtcext.workitem.extensions.service.buildOnStateChange";

__38. Understanding the service plug-in Eclipse project.

a. Inthe Package Explorer view, expand the tree for the service project
(net.jazz.rtcext.workitem.extensions.service) and double click the plugin.xml file.
Once again, there is a set of standard Eclipse plug-in definitions. Also, the most
interesting part is once again on the Extensions tab. On the left side, you see an
instance of the com.ibm.team.process.service.operationParticipants extension point.
All server side operation participants are defined using this extension point. In the
following steps, you will explore most of the nodes in this tree. Note that the tree is a
structural editor for the xml that comprises the definition. The text in parenthesis on each
line is the name of the xml element for that line. The raw xml can be seen on the
plugin.xml tab of the editor.

- <= icom.lbm, tearm. process, service, operationParticipants |
= |%] Build on State Change {operationParticipant)
=¥ net.jazz.ricext.workitem.extensions. service. BuildOnStateChangeParticipant (extensionSeryice)

=] {prerequisites)
[¥] com.ibm.team.warkitem.zervice.lworkItemServer {requiredService)
[¥] com.ibrm.team.build.internal.common. I TeamBuildService (requiredService)
[¥] com.ibm.team.build.internal.common. I TeamBuildRequestService {requiredService)

[(description)

Page 64 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Select the Build on State Change (operationParticipant) element on the left then the
right side of the editor will look like this. The class and operationld attributes are the two
most critical attributes. The class is the Java code that implements the service (more on
that soon) and the operationld identifies the Jazz operation for which the participant is
valid. In this case, the work item save operation. The id attribute identifies this participant
definition and is the same as the constant
IBuildOnStateChangeDefinitions. EXTENSION_ID. You will add a schema in a future lab.

Extension Element Details

Set the properties of "operationParticipant”. Required fields are dencted by "*".
id* net. jazz.ricext.workitem.extensions. service. buildOnStateChange

class*: net. jazz. ricext. workitern extensions service.BuildOnE | | Browse. ..

operationld: | cam.ibm.team.workitem.operation, workItemSave

name™ Build on State Change

schema: Browse. .,

c. Selectthe
net.jazz.rtcext.workitem.extensions.service.BuildOnStateChangeParticipant
(extensionService) element on the left and the right side of the editor will look like this.
Note that this element is optional. It is only required if the participant will require services
from other components. The value in the componentld field should look familiar. It is the
id given to the component in the common plug-in’s plugin.xml file. This ties the
participant to the component. When defining an operation participant, the
implementationClass attribute, is typically set to the same class as the class attribute in
the last step and that is the case here. This single class serves as both the participant
and a basic service implementation through which the required services will be found. As
you will soon see, this is much easier than it sounds.

Extension Element Details

Set the properties of "extensionService”. Required fields are denoted by "*",

componentld® net. jazz.ricext workiterm.extensions

irmplernentationClass™® | net jazz ricext. workitem. extensions. servic | | Browse. .,

d. If you select the (prerequisites) node, you will see that it has no attributes.

e. Skip over the children of the (prerequisites) node for a moment and select the
(description) node. On the right, you will see the description of the operation participant.

Lab 2 — Create a Simple Participant Page 65

IBM Software

-9

Up to now, all the work you would do to create this definition is possible from this one

place using the Add...
pop-up menus.

button and the New > cascade menu from the various element’s

All Extensions

B E
Define extensions for this plug-in in the following section,
type filter text /
= @=§E!:|m i m. team. process,. service, operationParticipants Add...
=X =V M| CperationParticipant
ns. service B ————
Delete
&= Show Description ervice.IWork
) | Open Scherna al-':'z'mm':'”-]“\
. Y Y e

Unfortunately, this is not the case for the children of the (prerequisites) node. You can

edit the nodes that are

there, but to add a new (requiredService) node, you need to edit

the xml on the plugin.xml tab. The syntax is pretty simple. Here you see three required
services. You will see how these services are used by the participant later.

<prerequisites>
<requiredService
interface="com
<requiredService
interface="com
<requiredService
interface="com
</prerequisites>

.ibm.team.workitem.service.IWorkItemServer"/>
.ibm.team.build.internal.common.ITeamBuildService"/>

.ibm.team.build.internal.common.ITeamBuildRequestService" />

Page 66

IBM Rational Team Concert 4.x Extensibility

IBM Software

h. As you may have guessed, this service plug-in has many more plug-in dependencies
than the common plug-in. There are dependencies on process for the operation
participant extension itself and on other components for the services the participant will
use. Here they are from the Dependencies tab.

Required Plug-ins 13,

Specify the list of plug-ins required for the operation of this plug-in.

?qléurg.eclipse.cure.runtime add...
?qlfcum.ibm.team.pruceas.cummun
?;Lcum.ibm.team.repuaih:ury.cummun
?r.l,cum.ibm.team.repusit:nry.aervil:e
?ql,cum.ibm.team.prucess.sewiu:e

Hrecom. bm. team.workiterm.commaon

e com. ibm. team.workitem. service

e com. ibm. team.build.common

Hrecom. ibm. team.build, service

“p=net. jazz.roext workitemn.extensions.cormmon (1,0.07

Total: 10

_39. Understand the code within the service plug-in Eclipse project

a. Back in the Package Explorer view, expand the
src/net.jazz.rtcext.workitem.extensions.service source package and then double click
the BuildOnStateChangeParticipant.java file. This file contains the participant
implementation. There are several interesting parts to this class. First, note the class
javadoc comment. The first paragraph repeats the description you saw in the plug-in.xml
file. The remaining text is critical to understand for anyone implementing operation
participants, that is:

= |tis critical to understand that operation participants are managed as singletons by the
process component. Therefore, their methods, most notably the run method must be
reentrant. Operation participants must not rely on any instance state variables (i.e.
non-static fields).

= While rare, it is occasionally the case that the complexity of the operation to be
performed and the number and interactions of methods and their data
interdependencies will present a case where the use of instance state variables is
highly desirable. In this case, another class will need to be defined and an instance of
that class created for each invocation of the run method. The run method can then
delegate the operation to the instance of this second class. This second class can use
instance state variables for its implementation.

Lab 2 — Create a Simple Participant Page 67

IBM Software

Next, note the declaration of the class. The class implements the
com.ibm.team.process.advice.runtime.lOperationParticipant interface. All operation
participants implement this interface. It defines the run method. The class also extends
the AbstractService class. Only participants whose extension definition in the plugin.xml
file contains the optional extensionService element have to extend this class. Recall
that you needed the extensionService element to declare the prerequisite services. Even
though the AbstractService class is indeed abstract, there are no abstract methods left
that this class has to implement. This class will, however, use methods from
AbstractService to locate the prerequisite services.

public class BuildOnStateChangeParticipant extends AbstractService implements
IOperationParticipant {

Note that a default constructor is required for an operation participant but is not explicitly
defined here. The default constructor added by the Java compiler is typically sufficient for
an operation participant.

Take a look at the run method javadoc comment. Note that the participant is called for
each work item save operation but only if the participant has been configured for a
project area or team area’s work item save operation behavior. You will see that
configuration later. The rest of the comment describes each parameter in detail. This
initial implementation only makes use of the operation parameter.

Note the first comment block in the body of the run method. The point here is that there
are often several checks your code will make in order to decide if there is action to take.
In deciding which order to check them, take into account the cost of the check (put more
expensive checks later) and the likely hood that the check will make your code decide
there is nothing to do (put more likely to fail checks earlier). Ideally, you want fast and
likely to fail checks first and slower less likely to fail checks later. Of course, sometimes
you will be faced with slow likely to fail or fast unlikely to fail checks and it will be a bit
more difficult to decide on an ordering. The order of checks here is:

i. Isthe data passed to the participant really for a work item save operation? This
should always pass but it is a best practice to make this check first.

__ii. Has the state id (the workflow state) changed? Note that the case of saving a new
work item is handled in these lines. In the case of a new work item, the oldState
(the full state data of the work item, not the workflow state) will be null. And in the
last line, note that Identifier<T>#equals(null) always returns false and the
overall test will pass so that one could have the work item type’s initial state be
the target state.

IWorkItem oldState = (IWorkItem) saveParameter.getOldState();
if (oldState != null) // New work item check.

oldStateId = oldState.getState2();
if ((newStateId != null) && ! (newStateld.equals(oldStateId))) {

Page 68

IBM Rational Team Concert 4.x Extensibility

-9

IBM Software

__iii. Is the work item of the type in which the participant is interested? Right now the

work item type id is hard coded to the Story type from the Scrum template. You
will change that later.

__iv. Is the work item now in the state (workflow state) in which the participant is

interested? Right now the work item state id is hard coded to the Story type’s
Implemented state (it does not look like it with the word tested at the end, but it
is). You will change that later.

If all those checks pass, a build request is made by calling the participant’s build
method. Note that the build definition id is also hard coded. That will also change later.

Conceptually, the build method is pretty simple. There are two lines (using the team
build service) to find the build definition and two lines (using the team build request
service) to request a build for that definition. The key element at this point is the
comment between the two sets of lines. Notably, that there are things that can go wrong
here that are not being handled. That will be corrected in the next lab.

So there you have a pretty simple participant that boils down to a few simple status
checks in the run method and four lines of code to request a build. There is one more
thing to do before leaving this editor. That is, set a breakpoint at the first line of the run
method. You will step through it several times in this lab. Double click in the margin next
to the first line of the run method to set the breakpoint. A small blue circle will appear
after you double click.

II."*

'(// * First check that the operation data iz work
wf

Ohiject data = operation.getOperationDatai)

IGaveParameter saveParawmeter = null:;

if [(data instanceof ISaveParameter)
saveParameter = [I3aveParameter) data;

Lab 2 — Create a Simple Participant Page 69

IBM Software

2.2

__40.

Launch the Server for Debug Using Jetty

Create the launch configuration.

From the Debug toolbar dropdown, select Debug Configurations...

sxlova~y ¥y &5~

@ 1 [RTCExt] RTC Eclipse Client

% 2 [RTCExt] Jetty RTC Server

% 3 [RTCExt] Create RTC Test Database
4 [RTCExt] Debug Running Tomcat

5

Debug As *
Debug Configurations...

Organize Favorites...

In the Debug Configurations dialog, expand the OSGi? Launch tree and right click the
[RTCExt] Jetty RTC Server configuration and then from the popup menu, select
Duplicate. Note that you are not changing the existing launch but creating a copy of it.
You should keep the original launch around unchanged to use as a known working base
from which to create other launch configurations.

4 & 0SGi? Launch
4 [RTCExt] Jetty RTC Server
4 {7 New oility -
& [nl Duplicate l)lllty
@ X Delete | Servi

Change the Name of the new configuration to [RTCExt] Build on State Change
- Jetty RTC Server.

Page 70

IBM Rational Team Concert 4.x Extensibility

IBM Software

d. Add your participant’s two bundles to the configuration. Click on the Bundle link and in
the Add Bundle dialog, type rtcext in the filter field, select the common plug-in and
then click OK. Repeat, but select the service plug-in this time. Your launch configuration
should look like this.

Mame: [RTCExt] Build on State Change - Jetty RTC Server

=L Bundles Settings | (= Tracing | B Environment | 1

Add a Featurs or|Bundlgto this launch.

Impert from or compare with bundles in another launch

[| »

» b Features (84 including required/nested)
v § Bundles (465 including required)
¥rcom.ibm.team.app.web

Ur-com.ibm.team.jazz foundation.server.licenses.enterprise-ea

Up-com.ibm.team.licensing.product.clm

<f=net.jazz.rtcext.workitem.extensions.common

<J=netjazz.rtcext.workitemn. extensions.service

Apply l ’ Rewvert

__e. Click Apply to save your changes but do not close the dialog.
__41. Launch the server.
__a. Click Debug at the bottom of the Debug Configurations dialog.

__b. Asinlab 1, the Console view will show a few log messages indicating that the Jetty
server is up and running.

& Tasks | 2. Problems | 2 Pending Changes |+ Search |gv JUnit & Console

[RTCExt] Jetty RTC Server [OSGi* Launch] C:\RTC30Dewinstalls\TeamConce
2011-02-02 16:59:58.022::INFO: Logging to STDERR

2011-02-02 16:59:58.272::INFO: Jetty-6.1.x
2011-02-02 16:59:58.676::INFO: Started SocketCon
2011-02-02 16:59:59.285::INFO: Started SzlSocke

Lab 2 — Create a Simple Participant Page 71

IBM Software

__c. The next time you want to debug this server configuration, you will be able to click a
shortcut to it on the dropdown of the Debug toolbar icon. You will not need to open the
Debug Configurations dialog.

2.3 Launch an RTC Client and Connect to the Server

__42. Launch the RTC Client.

__a. From the dropdown menu of the Run toolbar icon, select RTC Client. Note that you are
just running the client and not debugging. The same launch configuration can be used for

both. You will debug a client in a future lab.

o[vJa~ d#we~ &4~ v i v v
% 1 [RTCExt] Build on State Change - Jetty RTC Server

2 [RTCExt] RTC Eclipse Client
3 [RTCExt] Jetty RTC Server

4 [RTCExt] Create RTC Test Database

Run As 4
Run Configurations...

& |0

Organize Favorites...

__b. The RTC Eclipse client will start up and should look familiar. If you are prompted to clear
the runtime workspace, click Yes (you will usually click No, but this time start fresh).

Minimize the Welcome screen via this (m) button near the top or right of the window.

__43. Connect to the debug server.

__a. You will be in the Work Items perspective and the Team Artifacts view will be on the
left. In the Team Artifacts view, click the Create a Repository Connection link.

E Team A 2 & Team D | &My Wor | = O
All Project and Team Areas (No Project Areas

o % v | e G|

You are not connected to a project area.

Accept Team Invitation

Manage Connected Project Areas

Create a Project Area

|Create a Repository Connection |

Open First Steps welcome page for rgview

Page 72 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe Create a Jazz Repository Connection wizard, set the URI to
https://localhost:7443/jazz and the User ID and Password fields to TestJazzAdminl.
Note thatitis a ‘7’ and not a ‘9’ in the URI. Then, click Finish. Note that “\jazz” is the
correct context root and not “\ccm”. Recall from lab one that this launch runs the server
as one application at the “\jazz” context root and not as separate JTS and CCM
applications. This is generally fine for development and you do have the Tomcat server
with split applications for final testing (a later lab).

Q Create a Jazz Repository Connection u@g

Jazz Repository Conneclion | 7
Create a new Jazz repository connection.

Location
URE https://localhost:7443/jazz -
Name: localhost -

Authentication

Y| Authentication Type: lUsemame and Password -

UserID: TestlazzAdminl -
Password: eeeeeesseeeeee
Remember my password
Automatically log in at startup

c. You will now have a repository connection in your Team Artifacts view.

& Team Artifacts &2 . 3 Team Dashbo &z My Work| = B
All Project and Team Areas (No Project Areas connected)

SR RAN S 182

4 g Repository Connections
A TestlazzAdminl@localhost

% Favorites

- l@ Feeds
- @ My Repository Workspaces
- i My Team Areas

&% Work Item History

Lab 2 — Create a Simple Participant Page 73

https://localhost:7443/jazz

IBM Software

d. Right click your repository connection and from the pop-up menu select Open My User
Editor. In the user editor that opens, find the Client Access Licenses section at the
lower right and make sure the Rational Team Concert — Developer checkbox is
selected. Save and close the editor. You will use the TestJazzAdminl user id for
several operations that require a developer client access license.

~ Client Access Licenses

D Rational Team Concert - Contributor - Trial o
Rational Team Concert - Developer - Trial [10 of 10 remaining]
D Rational Team Concert - Developer for IBM Enterprise Platform:
D Rational Team Concert - Stakeholder - Trial

D Rational Team Concert - Build System (automated users only) - +
4 11 s

m

2.4 Edit the Process to Use the Participant

__ 44, Create a project area.

__a. Right click your repository connection and from the pop-up menu select New > Project
Area. In the Create Project Area wizard, set the Name to Test Project 1 and click

Next.
. Create Project Area @
Project Area .

Create a new project area, [3_| |

Marne: * Test Project 1

Summary:

Team Repository:

Page 74 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. On the second page of the wizard, click the Deploy Templates button. This operation
may take a bit of time. When it completes, you will be on the next page of the wizard.
Select Scrum on the left and then click Finish. When the operation completes and the
project area editor opens, leave the editor open for the next couple steps.

—

Q Create Project Area .. ® }

Choose Process Template

Select the template for the process that should govern the project are

English (Unj

Available Process Templates: Filter by locale:

& Formal Project Managel-
{5 0penUP Process

dEScrum

Description:
A process template for Scrum. Sci§

popular approach to manage projeg
@& Simple Team Process agile way.

& Unconfigured Process
< m » | Locale:

Deploy pre-packaged process templates to the repository.
If the templates have already been deployed they will be updated.

Project Area Initialization
@) Automatically initialize the Project Area on Finish as specified in the §

() Twill review the process specification before I manually initialize t

@ [< Back Next > Finish l

Lab 2 — Create a Simple Participant Page 75

IBM Software

_ 45, Add TestJazzAdminl as a member of the project area.

__a. On the Overview tab of the project area editor, expand the Members section and click
Add...

L
XY
Roles determine a user's permissions as well as any preconditions and follow-up actions that are run for project

and team operations. The roles assignments below are alsa valid in all the project's team areas. Unless configured
otherwise, all users in the repository play the 'default' role.

Marme Process Roles add...

b. Inthe Add Team Members wizard, type Test into the Enter user name field and then
click Search. Then, select TestJazzAdminl in the Matching users list, click Select
(moves TestJazzAdminl to Selected users) and then click Next.

) Add Team Members [| g
Users ‘i%

-

Select the users to be added to the team.

Enter user name:
(Enter a space to search on word boundaries or * for a full wildcard search)

Test

1 Matching users (9 users found):

TestlazzAdminl
N | TestlazzAdmin2
TestlazzGuestl

M

m »

1

4 I L4

Email: TestlazzAdmin1 - ID: TestlazzAdmin1

Select

Selected users:

@ < Back Next > Finish Cancel

Page 76 IBM Rational Team Concert 4.x Extensibility

IBM Software

__¢. On the second page of the wizard, select Scrum Master on the left, click Add -->
(moves the selection to the right) and then click Finish.

Q Add Team Members =" '

Process Roles &‘i

Assign the process roles for TestlazzAdminl.

Available Roles: Assigned Roles:

i Product Owner Add --> o default [unmodifiable] : Up |
I Scrum Master '
i Stakeholder

Remove Down

Description:

The person responsible for the process.

[]

'| Note: The ordering of a user's assigned roles reflects their relative priority. When
behavior is configured for multiple roles, the process runtime will execute the
behavior associated with the user's highest priority role. Priority doesn't affect
permissions; the process runtime will allow the user to perform actions granted

< Back Next > Finigh l [Cancel I

__d. Back on the project area editor’s Overview page, click Save (at the upper right) but
leave the editor open for the next step.

Lab 2 — Create a Simple Participant Page 77

IBM Software

__46. Add the build on state change participant to the work item save operation.

__a. Switch to the Process Configuration tab and then on the left, expand the Team
Configuration tree then select Operation Behavior. Then, on the right, scroll down to
the Work Items > Save Work Item (server) operation and select the Everyone
(default) column next to it as shown here.

24 Test Project 1 22

& Project Area ~

Test Project 1 4
Configuration e, Operation Behavior a
i Roles Select a cell in the table below to configure the precuf

+ 15 Project Configuration corresponding operation and role.

R .
= |2) Team Configuration Preconditions are checked before running an Dperatiuri

{ permissions operation's preconditions and follow-up actions can be.
| &® Operation Behavior | operation configurations completely replace each ot
f§ Event Handling (Unconfigured) choose the most appropriate operation configuration ﬁ»

0nn Ttergtion Types
B+, . .
- Timelines

preconditions and follow-up actions defined in that c
Operations Everyone ... | Pn ?
+-Build f
+-Dashboards
+-Planning "
+-Process “'
+-Reports
- Source Cantrol
Deliver (client) {4 ‘l
Deliver (server) ’
Save Change Set Links ar

=) Wark Ttems f
Save \Wark Ttem (server) | £t /

The Save \Woark Item operation is executed Whenever

<
Cverview Links | Process Configuration |Process Configuration Source | Access Confrol | work Tem Cal

Page 78 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Scroll down to find the Follow-up actions section on the right. Initially, the list will be

empty. Click Add... then on the Add Follow-up Actions dialog, select Build on State

Change (your new participant!) and click OK. Build on State Change will now be in the
list and when it is selected, the window will look like the following image. Finally, click
Apply changes and then click Save at the upper right of the editor.

Preconditions and follow-up actions are configured for this operation

[Final {ignore customization of this operation in child areas)

Preconditions (16 available):

Required Attributes For Type and State

pd

Follow-up actions (1 availahle/

Add...
Remove
Uo
Up

Doy

Build on State Change v

Add...

Remove

Down

Mame: Build on State Change

[T] Fail if net installed

When the specified work item type changes to the »
specified state, the specified build will be requested,

’Apply changes]

[Revert to last applied state

__¢. Make sure you have saved your changes, otherwise the next steps will fail.

You may now close the project area editor and any other editors that may still be open.

Lab 2 — Create a Simple Participant

Page 79

IBM Software

2.5 Trigger the Participant
__47. Create the “our.integration.build” build definition. You just need a simple build definition to test
the participant. The build does not need to run properly. The participant just needs to make
requests for it.
In the Team Artifacts view, expand the Test Project 1 node, right click Builds and then
click New Build Definition...
&) Team Arti &2 % Team Das | &g My Work| G Team Org| = O
All Project and Team Areas (1 of 1 areas selected)
Ex v h&E @
4 [p Repository Connections
£ TestlazzAdminl@localhost
4 @ Test Project 1 [localhost]
- & Builds
: [New Build Definition...
0 Show Build Results
G Search for Tagged Builds...
. I
| <" Refresh F5
Lz F
e Properties Alt+Enter
: g B
Page 80 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe New Build Definition wizard, make sure Create a new build is selected and then
click Next. On the second page of the wizard, change the ID to
our.integration.build, make sure Ant - Jazz Build Engine is selected and then
click Finish.

G New Build Definition

=l

General Information

Choose an 1D, description, and build template for the new definition

1D: our.integration.build

Description:

Available build templates:

Ant - Jazz Build Engine

Command Line - Jazz Build Engine

Command Line - Rational Build Agent

Generic

Jazz Build for Microsoft Visual Studio Solution - Jazz Build Engine

Maven - Jazz Build Engine

Rational Build Forge

Description:

A build using Ant and the Jazz Build Engine.

@ [< Back “ Next > l [Finish

AL WA AAAA

Lab 2 — Create a Simple Participant Page 81

IBM Software

c. Inthe build definition editor that opens, switch to the Ant tab, and enter a path for the
Build file and then click Save. You may now close the editor. Note that the build file does
not exist and any path will work for the current purpose. If you wish, you can use the
Build file path shown (. /buildLocation/build.xml). Also note that a default build
engine is created at this time and is associated with your new build definition. This
actually is important. If there was no build engine for your build definition, the
participant’s request for a build would fail.

O *gur.integration.build &3 =
o Build Definition ~
I | our. integration.build Project or Team Area: | Test Project 1

]
Build File and Targets Tl
Specify the Ant build file and the targets to be invoked. Properties can be
referenced using ${propertyMame}.,

Build file:* uildLacationbuild.xrmi|

This can be an absolute path on the build machine, or may be
relative to the current directory of the build engine process.

Build targets:

The targets in the build file 1o execute. Multiple targets must be
separated by a comma. If none are specified, te build file's default
target is executed.

» Ant Confiomratinn

¢ it [»
Crverview | Schedule Prcnperties

__48. Create a Story work item.

__a. Click the dropdown menu arrow next to the New Work Item toolbar icon and then click
Story.

Bl i @-:iq-:4-
[&| Defect
5| Task

2 Epic

A Tragkeuges A e

Page 82 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. Inthe new work item editor that opens, set the two required fields and shown here and
then click Save in the upper right corner.

[£] #=11:17:08>; <untited= &2

El Story <11:17:08= ~

|Summar1,r:"‘ &g a user, I want to build stuff |

N NNy,

= Details - Des
Type: E] |Story V

Filed &gainst:* | T8stProject 1 V va

Story Points: 0 pts v

Frogress:

Progress: - Estimated: -
Project freas st Project 1 y _ P ’
s S S AP

__c. The breakpoint you set earlier is now hit. The RTC Eclipse client in which you were
studying the code will now surface (if asked about switching to the debug perspective,
click Yes). If it does not surface, you probably minimized it earlier. In this case, it will be
flashing in the Windows taskbar. Click it in the taskbar to surface the debugger. You
should see something like this. Step through the run method using the Step Over button
or F6. The check for the target state will fail and the run method will exit without

requesting a build. After that check fails, be sure to click the resume button (”F')-

.'Debug - net.jazz.rtcext.workitem.extensions.service/
File Edit Source Refactor Mavigate Search Project Run Window Help

b T EHr@ @ it Q- @y
%5 Debug &7 O = e [y W = ¥ =0 W“’

p® Thread [Acceptor [SSL: ServerSDcket[addeI.D.D.Df‘D.D.D.D,pDrt=:A: Na'
=i Thread [SsiListener1-2] (Suspended (hreakpoint at line 107 in BLC|| & ?
= = BuildOnStateChangeParticipant runadyisableOperation, Proo +

L

1|

= MativerethodaccessarImpl. invoked (Method, Object, Object[T[] -
< | — i ->.. .
41 BuildonStateChangeParticipant. java &2 ;
* Firzt check that the operation data is work iteml
i
bzl Chiject data = operation.getOperationDatal) : {?
IGawveParameter saveParameter = null;

if [data instanceof ISzveParaweter) |
saveParameter = ([IBaveParawmeter) data;

Lab 2 — Create a Simple Participant Page 83

IBM Software

Switch back to the launched RTC Eclipse client where you created the work item. Your
work item will be successfully saved, and will be in the New state. If it shows a failure
due to timeout, close the editor without saving, recreate the Story and when the

breakpoint hits, just use the resume button ("'E')-

__49. Move the Story to the Implemented state.

__a. Atthe upper right portion of the work item editor, select Set Implemented and then click

Save.
253 =
ké SEl N
i st % |New v
I:-'*'x' My
i ¥ Ostart Working
" Set Implemented |
_a;' — set Done
* w | B Defer
2 — Reject
s -
.I."-___.u'__ &ti#J‘H-“_‘M-_ "-"\ '-ﬁ-_-

__b. Once again the breakpoint is hit and your debugger surfaces (or you need to click it in
the Windows taskbar). Step through the code again. When you get to the call to the build
method, use the Step Into button (-). You can then step through the four lines that
request the build and then click the resume button (”E')-

Page 84 IBM Rational Team Concert 4.x Extensibility

IBM Software

__c. Switch back to the launched RTC Eclipse client where you created the work item. Your
work item will be successfully saved. In the Team Artifacts view, double click the
our.integration.build build definition.

i Team & % Team | My Wo| G Team |~ O
All Project and Team Areas (1 of 1 areas selected)
cERARE 182
< g Repository Connections
4 TestlazzAdmin1@localhost
4 W Test Project 1 [localhost]
4 [Builds
= 0 Build Engines

o our.integration.build

d. The Builds view opens showing the build request the participant just submitted.

Bl work Items [Tag Cloud | [2 Problems |88 Team advisor | 2% Builds &2 =0

our. integration. build - Found 1 Build {312 ms) A v v B v &
Build Label Progress Estimated Cormpletion | Start Time

== our.integration.build Pending

(< | 11T [#]

Lab 2 — Create a Simple Participant Page 85

IBM Software

2.6 Rename Build Definition and Try Again

__50. Rename the build definition.

__a. Inthe Team Artifacts view, right click the our.integration.build build definition and then
click Open Build Definition.

& Team Artif &2 . ¥ Team Das |z My Work| & Team Org |~ 5
All Project and Team Areas (1 of 1 areas selected)
B3 v k& @
4 (g Repository Connections
4 TestlazzAdmin1@localhost
4 @ Test Project 1 [localhost]
4 g Builds
- [0 Build Engines
o our.integration.build
Show Build Results
Open Latest Build Details
Search for Tagged Builds...

Open Build Definition

R

b. In the build definition editor change the ID to our. integration.build.renamed and
then click Save. Do not close the editor as you will want to rename it back soon.

=] g: 4z 3 user, I want to build stuff O our.integration.build.renamed &2 = 0

o Build Definition ~ I

| 10: | bur.integration.build.renarmed | Project or Team area: | Test Project 1

General Information
General information about this build definition,

Page 86 IBM Rational Team Concert 4.x Extensibility

IBM Software

__51. Move the story to the Implemented state again.

__a. Switch back to the work item editor and select Reopen from the state dropdown and

then click Save. When the debugger surfaces, just click the resume button (DF’). You are
not to the interesting bit yet.

] 8: 45 3 user, [want to build stuff 52 O our.integration.build.renamed = 0
| Story 8 ~ 8w EE P
Surnrary: ™ As a user, [want to build stuff = |Implemented W

. Implemented
~ Details Complete Testing
Type: E] |Star v | fReopen
" | ! [] Defer
Filed Against:™ |Teat Project 1 [v] SE| Reject

b. Again in the work item editor, select Complete Development from the same dropdown
and click Save again.

] 8: 45 3 user, [want to build stuff 52 O our.integration.build.renamed = 0
E Story 8 ~ & W EE
Summary:™ | As a user, I want to build stuff 0 |In Progress w

. ,Ln Progress
~ Details camplete Development

Type: E] |5tCIr':.-' [V]

Filed Against: ™ |Teat Project 1 [V] v

> =Y ¥ ¥

__c¢. This time, when the debugger surfaces, use the step over button to get to the build
method call and then use the step into button. Step through the build method and note
the major difference this time. The call to get the build definition returns null and the
request of the build throws an exception. Click the debugger’s resume button. Then
switch back to your work item editor and note the red at the top, “Exception running
followup action”. It is actually a link to the Team Advisor view. Click it now.

= O

] *3; a5 3 user, I want to build stuff 2 O our.integration.build. renamed

@ Story 8 ¥ Exception running followup action & @ EF

Summary:™ | As a user, I want to build stuff & |C|:|mplete Development [V

- Details - Description

R S e et e N N ol

Lab 2 — Create a Simple Participant Page 87

IBM Software

__d. The Team Advisor view appears with more information on the error. Click the Show
Detail Tree button.

Bl work Ttems |7 Tag Cloud | (20 Problerms | 3 Team advisor 52 &2 Builds =0
-0~ le|EPR T

Save Work Item (failed)

4 Exception running followwup action Problem _ _
& unhandled exception occurred during
"Build on State Change".

The pararmeter "buildDefinitionHandl="
st not be nwll,

Reason

Whien the specified work itemn type
changes to the specified state, the
specified build will be reguested.

Bl gy did this happen?

e. The left side of the view changes to show the structure of the error condition. Click the
nodes on the left to see what information is available. It is clear that better information
would be helpful. For example, a messages stating that the participant was looking for a
particular build definition but could not find it would make it much easier to fix the
problem. In the next lab, you are going to work on this.

Bl work Ttems |7 Tag Cloud | (£ Problems | 282 Team Advisor 52 & Builds =0
R TR AP
Tirm... bl
o A . Problem
¢* Save Work Item [server]2: 0.01 s An unhandled exception occurred during
- & Build on State Change S5.065 "Buid on State Change".

© Exception running follow
’ The parameter "buildDefinitionHandlie" must
not be .

Reason

When the specified work item type
changes to the specified state, the
specified build wil be requested.

B vyl did this happen?

Page 88 IBM Rational Team Concert 4.x Extensibility

IBM Software

f. Switch back to the build definition editor and change the ID back to
our.integration.build and click Save.

=] *3: a5 3 user, I want to build stuff O *our.integration.build 3 = O
g Build Definition ~ @ | save

ID: | our. integration. build] Project or Tearm Area: | Test Project 1

-
S | RPN SR S L SOOI SPNE

__g. Switch back to the work item editor and click Save. When the debugger surfaces, you
can step into the build method again or just hit resume. Once you do resume, the work
item save should complete okay. Return to the work item editor to confirm this. If you go
to the Team Advisor view and turn off the Show Failures Only filter (see highlight
below), you can browse the results of this successful operation. Also, if you refresh the
Builds view, you will now see two pending build requests.

Bl work Ttems | [Tag Cloud | (20 Problems | 888 Team advisor 52 22 Builds =0
beo [Pl
T Lt
=1 : ate
& gave Work Item [server] 2: 0.02 s Save Work Item completed successfully,
&5 Required Properties 0.00 s
=g Build on State Change 2.89s =l yhy did this hapnen?

Request Build [server 0.20 s

GRS QLTS e g e gd

__52. Close down the launched client and server.

a. Close the launched RTC Eclipse client where you were working with the Story and build
definition (logged in as TestJazzAdminl).

b. Back in the original RTC Eclipse client, go to the Console view and click the Remove All
Terminated Launches icon (to remove the console for the client and surface the server
console) and then the Terminate icon.

Bl Console & . ¥ Tasks| g1 JUnit [%] G EEHE) =8 v i~ =0

[RTCExt] Build on State Change - Jetty RTC Server [OSGi? Launch] C:ARTC30Dewinstz
at Dré .o rtbair . i ettir . HttiaConnect‘ion -handle (Ht ~
at org.mortbay.jetty.bio.SocketConnectorsConr

at org.mortbay.jetty.security.SslSocketConnec
at org.mortbay.thread.QueuedThreadPool5PoolTh

m

Lab 2 — Create a Simple Participant Page 89

IBM Software

You have completed lab 2. You now have your first functional but not
entirely perfect server side operation participant. In future labs, you will

improve the error handling and make the work item type, state and build
id configurable.

Page 90 IBM Rational Team Concert 4.x Extensibility

IBM Software

Lab 3 Add Error Handling

Lab Scenario

You have fulfilled the initial requirement, but you didn’t really think that
would be all, did you? The scrum masters like the behavior but find the
messages reported on a failure confusing. You are baffled by this. They
seem obvious to you, but you just roll your eyes and head back to your
cube to get to work.

If your RTC server is not running, start it now (C: \RTC40Dev\in-
stalls\JazzTeamServer\server\server.startup.bat).

3.1 Understanding Error Handling Code

1. If your RTC development environment is not open, navigate to
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse in the Windows explorer
and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one
you used in lab two. If the Plug-in Development perspective is not open, open it now by
selecting Window > Open Perspective > Other... > Plug-in Development from the menu bar.

_ 2 If it is already open, you may need to log back into the server. Recall, that you had to shut the
server down earlier and this should be your first interaction with it again since then. Go to the
Team Artifacts view and check the status of your repository connection.

3. Browse and load the Lab 3 code.

__a. Inthe Pending Changes view, click the Expand to Change sets icon. This will show 3
incoming baselines as shown here.

[£¢ Problems | B Wark Items | /% Pending Changes 52 . 48 Team advisor | B Consale =0

3 incaming baselines S AL G E) < 7
= [E RTC Extension Warkspace <-= RTC Extension Stream
= dlg RTC Extension Lab Code
= 28 Incoming
® [E 5:Lab 5 Code Apr 26, 2010 9:59 AM (Last Week)
[E 4:Lab4 Code spr 26, 2010 9:56 &M (Last Week)
£ 3 Lab 3 Code Apr 26, 2010 9:54 AM (Last Week)

Lab 3 — Add Error Handling Page 91

IBM Software

b. Right click the Lab 3 Code baseline under the RTC Extension Workspace node, and
then click the Expand Children action. This will reveal all the changes made for lab 3.
As you can see just the participant implementation class itself has changed.

[£¢ Problems | Bl Wark Items | /4 Pending Changes 52 . 48 Team advisor | B Consale =0

3 incoming baselines S A O E Py %

= [E RTC Extension Warkspace <-= RTC Extension Stream
= i RTC Extension Lab Code
= 2 Incaming
£ 5 Llab 5 Code Apr 26, 2010 9:59 AN (Last Week)
£ 4: Lab 4 Code Apr 26, 2010 9:56 AM (Last Week)

- [Z] 3:Lab 3 Code Apr 26, 2010 9:54 AM (Last W 4§, Arcept i HShifHE L2
= 4. ADMIM Lab 3 Code
= =2 netjazz.ricextworkitem extengions. |E}{pand Childrenl naiong
| [Ja BuildOnStateChangeParticipant. java |
& >

__c. Double click the changed class to open a comparison editor. You may want to double
click the tab of the opened editor to maximize it.

£F BuildonStatechangeRarticipant. java &2 =0

Java Structure Compare

= M
+-“= Import Declarations
=@ BuildonStateChangeParticipant
88 buildisString, IParticipantInfoCollector)
@8 buildisString)
runiadvisableCperation, IProcessConfigurationElement, IParticipantinfoCollector, IProgresshonit
< >
Java Source Compare EI; "-,_ﬁ& iy fih
BuildOnStateChangePartici.... java (after) {read-only) BuildOnStateChangePartic...eam (before) (read-only)
[1Z2import org.eclipse.osgi.util. MNLS; }",_ 12 A
13 1Zimport com.ibm.team.build. cormd O
14import com.ibi.testo.bulld. common. me l14import com. ibm. tesan.build. intern
15import com.ibm.team.build. internal. 15import com.ibm.tceam.build.inter
loimport cow.ibi.tesmw.build. internal. loimport com. ibm. Cestn. process. ool
17import com.ib.team.process. conuon. 17import com.ibm.Ceam.process. co|
18import cow.ibi.tesm. process. conuon. 18import com. ibm. Cestn. process. ool
1%import com.ib.teamwm.process. conuomn. 12import com.ibm.Ceam.process. co|
20import com. ibi.testn. process., oo, 20import com. ibm. Cestn. process. ool
Zlimport com.ibi.team.process. conuon. Zlimport com.ibm.tceam.repository.
2Z2import com.ibi.testn. process. oo, Z2Z2import com. ibm.testn.repository.
Ziimport com.ibi.team.process. conuon. Ziimport com.ibm.tceam.workitem. g -
< > < >

Page 92 IBM Rational Team Concert 4.x Extensibility

IBM Software

d. Browse the changes and you will notice these key changes. The additional behavior will
be discussed in detail after the code is loaded.

i. The collector parameter to the run method is now passed through to the build
method where it will be used.

__ii. The build method now checks for several error conditions in this order.
+ Can the build definition be found?
+ Was the build request created successfully?

__iii. In all cases, even success, information is added to the collector.

e. Close the comparison editor and then in the Pending Changes view, right click the Lab
3 Code baseline under the RTC Extension Workspace node, and then click the Accept
action. This will accept and load the lab 3 delta on top of what you already have loaded
from lab 2.

{2 Problems | B Wark Items | /% Pending Changes 52 . @ Team advisor | B Consale = b

3 incarning baselines S AL G E

it o
= E RTC Extension Workspace <-= RTC Extension Stream
= i RTC Extension Lab Code
= 2 Incaming

£ 3. Lab 5 Code Apr 26, 2010 9:59 AN (Last Week)

[E 4:Lab 4 Code apr 26, 2010 9:56 AN (Last Week

i [Z£] 2 Lab 2 Code d&ner 26 2010 054 M A act Wil

- ADMIN La| % Accept Ctri+shiftF1z |

w

= = netjz Expand Children r/netfjazz ricextfworkitem fextensions,t
(44
< >

4. Understand the error handling code.

a. Back in the Package Explorer view, expand the
src/net.jazz.rtcext.workitem.extensions.service source package and then double click
the BuildOnStateChangeParticipant.java file.

b. First, make sure the breakpoint at the start of the run method is still present and active. If
it is not, add the breakpoint again by double clicking in the left margin next to the first
line. Note that the load of the updated code may have moved the breakpoint into a
comment. If that is the case, remove the breakpoint and create a new one at the start of
the run method.

c. Scroll down to the build method. Note as before that the information collector is now
passed to the build method.

Lab 3 — Add Error Handling Page 93

IBM Software

__d. The first change to the body of the method is to check that the build definition was

actually found.

/*
* If the build definition was found, try to run the build.
*/

if (buildDef != null) {

If the test fails the information collector is updated in the corresponding else block as
follows.

= The NLS.bind method inserts the build id into the message at the {0} insertion point.
The single quotes are doubled so that the resulting substitution looks like ‘buildld’.

= The collector.createlnfo method is a simple factory method.
= The severity of ERROR is then set.

= Finally, the report info item is added to the collector. Note that this is not done
automatically by the createlnfo factory method.

/*
* The build definition was not found, report this back as an error.
* An error report will stop the work item save from succeeding and
* will show up in the team advisor.
*/
String description = NLS
.bind("The build request for build definition ''{0}'' could not be found.",
buildId) ;
IReportInfo info = collector.createlInfo("Unable to request build",
description);
info.setSeverity (IProcessReport.ERROR) ;
collector.addInfo (info);

The second change is to check that the build request was successfully submitted.

/*
* If the build request has been submitted, report success back. It
* will show up in the team advisor if success reports are not being

filtered out and the show details tree is expanded.
*/
if ((response != null) && (response.getFirstClientItem() != null)) {

Page 94

IBM Rational Team Concert 4.x Extensibility

IBM Software

If the test fails the information collector is updated in the corresponding else block in the
same manner as above. If the test passes, the information collector is also update to
indicate success as follows.

= The NLS.bind method inserts the build id into the message at the {0} insertion point.
The single quotes are doubled so that the resulting substitution looks like ‘buildld’.

= The collector.createlnfo method is a simple factory method.
= There is no need to set a severity since OK is the default.

= Finally, the report info item is added to the collector. Note that this is not done
automatically by the createlnfo factory method.

String description = NLS

.bind("A new build request for build definition ''{0}'' was submitted.",
buildId);
IReportInfo info = collector.createInfo("Build request successful", description);

collector.addInfo (info) ;

3.2 Launch the Server for Debug Using Jetty

__ 5. Use the existing launch configuration from lab 2.

a. From the Debug toolbar dropdown (i) in the toolbar, select [RTCExt] Build on
State Change - Jetty RTC Server.

b. Asinlab 1, the Console view will show a few log messages indicating that the Jetty
server is up and running.

| Tasks |[Z: Problems | 4 Pending Changes |+ Search |dgv JUnit E Console

[RTCExt] Jetty RTC Server [0SGi® Launch] C:\RTC30Dewinstalls\TeamConce
2011-02-02 16:59:58.022::INFO: Logging to STDERR

2011-02-02 16:59:58.272::INFO: Jetty-6.l.x
2011-02-02 16:59:58.676::INFO: Started SocketCon
2011-02-02 16:59:59.285::INFO: Started SslSocke

Lab 3 — Add Error Handling Page 95

IBM Software

3.3 Launch an RTC Client and Connect to the Server

6. Launch the RTC Client.

__a. From the dropdown menu of the Run toolbar icon, select [RTCExt] RTC Eclipse Client.
Note that you are just running the client and not debugging. The same launch
configuration can be used for both. You will debug a client in a future lab.

D~ ~ EHFG~Y @5~ v v iooow
% 1 [RTCExt] Build on State Change - Jetty RTC Server

2 [RTCExt] RTC Eclipse Client
3 [RTCExt] Jetty RTC Server
4 [RTCExt] Create RTC Test Database

41 e

g

Run As b
Run Configurations...

Organize Favorites...

__b. If prompted do not clear the runtime workspace. You will probably answer no for this
question for the rest of this workshop. You can turn off the prompt by editing the launch
configuration.

Mame: [RTCExt] RTC Eclipse Client

=L= Bundleq | [=] Main . |[3- Configuration| £ Tracing | g Enwi

Workspace Data

Location: S{workspace_loc)/../runtime-Mew_configuration

[C] Clear: |@ workspace log only | Workspace...

Ask for confirmation before clearing

Program to Run

__¢. The RTC Eclipse client will start up and will connect automatically to the Jetty server you
just launched via the repository connection you created in lab 2. The project area will still
be connected and is configured for the participant since you did that in lab 2.

Page 96 IBM Rational Team Concert 4.x Extensibility

3.4

IBM Software

Trigger the Participant

Find the Story work item used in lab 2 (it is probably number 7) e.g. in the work item history and
move it out of the Implemented state (via the Reopen action) or create a new story.

a.

Either of these will cause the breakpoint you set earlier to trigger. If it does not trigger,
check if the breakpoint is set to to correct line of code. If necessary remove the old break
points and add a valid one. And change the state of the story back. The RTC Eclipse
client in which you were studying the code will now surface (if asked about switching to
the debug perspective, click Yes). If it does not surface, you probably minimized it earlier.
In this case, it will be flashing in the Windows taskbar. Click it in the taskbar to surface
the debugger.

If you wish, step through the run method using the Step Over button or F6. The check
for the target state will fail and the run method will exit without requesting a build. In any
case, be sure to click the resume button ("'E').

Switch back to the RTC Eclipse client where you created the work item. Your work item
will be successfully saved. If it shows a failure due to timeout, close the editor without
saving, recreate the Story (or reedit the existing Story) and when the breakpoint hits, just

use the resume button ("%).

Move the Story to the Implemented state.

_a

At the upper right portion of the work item editor, select Set Implemented or Complete
Development (depends on which workflow state the story is currently in) and then click
Save.

B3 =0

= v c
@ EE o0 Save

uild stuff o [In Progress v]

Cumlete Development

MR T B

Lab 3 — Add Error Handling Page 97

IBM Software

b. Once again the breakpoint is hit and your debugger surfaces (or you need to click it in
the Windows taskbar). Step through the code again. When you get to the call to the build

method, use the Step Into button (-)- You can then step through the check and status
code that have been added around the same four core lines of code that request the

build. Remember to click the resume button (”B') when done stepping.

c. Switch back to the RTC Eclipse client where you created the work item. Your work item
will be successfully saved. If it shows a failure due to timeout, try saving again and when
the breakpoint hits, just use the resume button (”E')-

d. If you go to the Team Advisor view and check to make sure the Show Failures Only
filter is off and Show Detail Tree is on (see highlight below), you can browse the results

of this successful operation. Also, if you double click our.integration.build in the Team
Artifacts view, the Builds view will show a new pending build request.

B wark Items |7 Tag Cloud | 26 Problems |88 Team advisor 52 . &% Builds =0
T o T
Time ...
- ¢® Save Work Item [server] 3:50:18 0.05 s Info
P - _ — - & new build request for build definition
e Required Properties 0.00 = ‘our integration.build’ was submitted.
=g Build on State Change 24.94 5

[] Reason
¥ Build request.successﬁJl when the specified worl: item type changes to the
¢# Request Build [server] 3:50 0.41 s specified state, the specified build wil be requested.

S ity did this happen?

Page 98 IBM Rational Team Concert 4.x Extensibility

3.5

)

IBM Software

Rename Build Definition and Try Again

Rename the build definition.

In the Team Artifacts view, right click the our.integration.build build definition and then
click Open Build Definition.

£ Team Artif 22 - % Team Das | iz My Work| & Team Org | = O
All Project and Team Areas (1 of 1 areas selected)
B v & @
4 [p Repository Connections

i Test)azzAdminl@localhost
4 1 Test Project 1 [localhost]

4 L5 Builds
- 0 Build Engines

o our.integration.build

Show Build Results

Open Latest Build Details

Search for Tagged Builds...

¥ gy

Open Build Definition

In the build definition editor change the ID to our.integration.build.renamed and
then click Save. Do not close the editor as you will want to rename it back soon.

*]g: a5 3 user, I want to build stuff O gur.integration.build.renamed 2 = 0

o Build Definition ~ 2

10: | bur.integration.build.renarmed | Project or Tear Area: | Test Project 1

General Information
General information about this build definition,

PN 1PN S SRSy

Lab 3 — Add Error Handling

Page 99

IBM Software

__10. Move the story to the Implemented state again.

a. Switch back to the work item editor and select Reopen from the state dropdown and

then click Save. When the debugger surfaces, just click the resume button (Db). You are
not to the interesting bit yet.

-

K;’:_I 8: 45 a user, [want to build stuff &2 O our.integration.build.renamed 1 =
& Story 8 ~ & @ e S
Surnmary: ™ | As a user, T want to build stuff = |Implemented w

. Implemented
~ Details Cornplete Testing
Type: Story v Reopan
Defer
Filed Against:™® Test Project 1 Reject

SR ppl T A ___Ju-é—‘ | s mrimand®™.

b. Again in the work item editor, select Complete Development from the same dropdown
and click Save again.

-

o e |
*] 8: &5 3 user, I want to build stuff &2 O our. integration.build.renamed 1 B
%] Story 8 ~ & W EE P

Surnmary:™® | As & user, want to build stuff ED |In Progress w
1IN Progress

~ Details Complete Development
Type: Stary w Set Done

Defer
Filed Against:™® Test Project 1 w |5 Feject

" SHY PN smmnna T e M*“"‘f Ir‘l

Page 100 IBM Rational Team Concert 4.x Extensibility

IBM Software

This time, when the debugger surfaces, use the step over button to get to the build
method call and then use the step into button. Step through the build method and note
the maijor difference this time. The call to get the build definition returns null, but this time
a null pointer exception is not thrown as in lab 2. This time, your new code carefully
records and returns the error. Click the debugger’s resume button. Then switch back to
your work item editor and note the red at the top, “Unable to request build”. Already you
have a bit better information as to what went wrong. Click the red error text to go to the
Team Advisor view.

%] *7: 4s 3 user, I want to build stuff &2 O gur. integration.build.renamed = 0
@ Story 7 ~ Unahle to request build 2w e
Surnmary:™ | As a user, Twant to build stuff B |Complete Developrment v
= -
~ Details ~ Description

Wq4m*ﬂ-’mw“&..’\--ﬂ““ '\-":--‘.-*..'_H ‘_’j ~Snieiinsmt |

The Team Advisor view appears with more information on the error. The left side of the
view shows the structure of the error condition. Click the nodes on the left to see what
information is available. It is clear that you now have much better information as to what
went wrong.

B work Items |7 Tag Cloud | £ Problerns | 88 Team advisor 52 . &b Builds =B
R REE N
Time ... b
o n- Problem
o E\:'""E W.urk Item [Server] 4:00:34 0,02 s The build request for build definition
o Required Properties 0.08 = 'our integration.build' could not be found.
@@ Build on State Change 23203

Reason
when the spedified work item type changes to the
specified state, the spedified build wil be requested.

@ {nable to request build ;

8= vy did this hanpen?

Switch back to the build definition editor and change the ID back to
our.integration.build and click Save.

x| *@; a5 auser, I want to build stuff O *gur.integration.build &2 = 0O
o Build Definition ~ & R

ID: | our.integration.build] Project or Team Area: | Test Project 1

Mlﬂwﬂﬂ.d_&‘ f -.q______' ” e maiinnatndlT w..-t-nb-'

Lab 3 — Add Error Handling Page 101

IBM Software

f. Switch back to the work item editor and click Save. When the debugger surfaces, you
can step into the build method again or just hit resume. Once you do resume, the work
item save should complete okay. Return to the work item editor to confirm this. If you go
to the Team Advisor view and the Show Failures Only filter is off, you can browse the
results of this successful operation. Also, if you refresh the Builds view, you will see
another new pending build request.

__11. Close down the launched client and server.
a. Close the RTC Eclipse client where you were working with the Story and build definition.

b. Back in the original RTC Eclipse client, go to the Console view and click the Terminate
icon.

v Tasks | B console 52 | gt Junit J'Search % Gk RE|E =R T B

Build on State Change - Jetty 1azz Server [0SGiE Launch] DR TC20020ev jazzhe lientyeclipse jdkibint java
at org.mortbhay.http.HotpConnection.handle (HetpConnection. java: 837 A
at org.morthay.http.3ocketlistener. . handleConnection(3ocketlListene
at org.mortbhav.util. Threaded3erver . handle (Threadedlerver. java: 357
at org.morthay.util. ThreadPooliFPoolThread. run(ThreadPool. java: 534

w
< ¥

c. Ifthere are many launches it is easy to miss to stop one. This can cause conflicts when
starting a new launch.

To make sure to get not confused about which launch is still running, use the button

Remove All Terminated Launches in the Console or the Debug window and check the
Debug window is empty.

x| %l Cx RE(E]EE) =% B ~

| Remowve All Terminated Launches I—

% Debug i3 I:l | |_‘T5Ev=EI

You have completed lab 3. Your initial server side operation participant
fails in a much friendlier manner. In future labs, you will make the work
item type, state and build id configurable.

Page 102 IBM Rational Team Concert 4.x Extensibility

IBM Software

Lab 4 Parameterization

Lab Scenario

The error and success message are sweet! However, your scrum masters
clients have more ideas. Now they want to be able to configure the work
item type and state to trigger a build. They also want to be able to specify
which build to run. You think they could of mentioned that the first time!

If your RTC server is not running, start it now (C: \RTC40Dev\in-
stalls\JazzTeamServer\server\server.startup.bat).

41 Understanding Parameterization

1. If your RTC development environment is not open, navigate to
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse in the Windows explorer
and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one
you used in lab two. If the Plug-in Development perspective is not open, open it now by
selecting Window > Open Perspective > Other... > Plug-in Development from the menu bar.

2. Browse and load the Lab 4 code.

__a. Inthe Pending Changes view, click the Expand to Change sets icon. This will show 2
incoming baselines as shown here.

(2. Problems | 8 Team advisor | & Console | /% Pending Changes 22 =0
2 incoming baselines F AT _ #howr v

= [E RTC Extension Warkspace <-= RTC Extension Stream
= iy RTC Extension Lab Code
= 2 Incoming
[&] 5:Lab S Code apr 26, 2010 9:59 AR
+ 4: Lab 4 Code Apr 26, 2010 9:56 AM

Lab 4 — Parameterization Page 103

IBM Software

b. Right click the Lab 4 Code baseline under the RTC Extension Workspace node, and
then click the Expand Children action. This will reveal all the changes made for lab 4.
As you can see there are quite a few more changes in this lab.

(2. Problems | 8¢ Team Advisor | Bl Console | /% Pending Changes 22 =0
2 incoming baselines S| AL EE b«
= @ RTC Extension Workspace <-> RTC Extension Steam
= iy RTC Extension Lab Code
= ¥ Incoming
(& 5:lab5Code Apr 26, 2010 9159 AR
- [Z] 4:Lab 4 Code Apr 26, 2010 9:56 Al
40 ADMIM Lab 4 Code
= = retjazz.ricextwoarkitem.e | Expand Children
[Yan IBuildOnStatechangebefinitions. java
= = retjazz.ricextworkiterm.extensions. service
=7 schema
o build. properties
5 plugin.xml
= = retjazz.ricextworkiterm.extensions. service/schema
¥ buildOnStateChange. xed
= = netjazz.ricextworkitem.extensions.service fsro et/ jazzfricext i
[Yén BuildOnStateChangeFarticipant, java

&, Accept Cirl+Shift+F12

c. Double click the first changed file, IBuildOnStateChangeDefinitions.java to open a
comparison editor. You may want to double click the tab of the opened editor to
maximize it. A set of constants have been added to this file. Most of them define
elements of the XML schema that will be used to configure your follow up action. You will
look a little closer at this soon. Close the comparison editor.

Page 104 IBM Rational Team Concert 4.x Extensibility

IBM Software

d. The next four changes all have to do with adding the schema definition. The first adds
the schema folder to the service plug-in. The second adds that folder and its contents to
the plug-in’s build properties. The third, adds the schema to the participant’s extension
point definition from lab 2. The fourth change adds the schema file itself. You will look at
the schema file in some detail later in this lab.

{2 Problems | 48 Team advisor | B Console | /& Pending Changes &2 =0
2 incoming baselines S| AL EE $howr ¥
= [E RTC Extension Workspace <-> RTC Extension Strearm ”
= iy RTC Extension Lab Code
= 22 Incoming

[E 5:Lleh 5 Code &pr 26, 2010 9:55 A
= 4: Lab 4 Code Apr 26, 2010 2:58 Al
= 4. ADMIM Lab 4 Code
= = netjazz.ricext.workitem.extensions.common/src fnet/jazz Aricexthy
[J4a [BuildOnStateChangebefinitions. java
- L= netjazz.ricextwarkitem.extensions.service
= schema
[ozgn build properties
= plugin.xml
= net.jazz ricextworkitem.extensions. service/schema
¥z buildonStateChange. xsd

= netjazz.rtcextworkitern. extensions. servicefsrc fretfjazz rtoentfng ¥
£ >

Lab 4 — Parameterization Page 105

IBM Software

__e. The final change is once again to the participant implementation itself. Double click the
BuildOnStateChangeParticipant.java file to open a comparison editor. You may want
to double click the editor’s tab to maximize it.

EF BuildonStateChangeParticipant. java 52 =

Java Structure Compare
= 4] Compilation Unit
== Import Declarations
4-8 net.jazz. ricext workitem.extensions. common. [BuildOnStateChangeDefinitions
=@ BuildOnStateChangeParticipant
&a ParsedConfig
@8 parseConfigl{lProcessConfigurationElement, ParsedConfig)
@8 parseConfig2iParsedConfig)
run{AdvisableCperation, IProcessConfigurationElement, IParticipantinfoCollects

£ b
Java Source Compare ﬁ:; "-,_",-,?ﬁ £ i
BuildonStateChangePa. .. (after) {read-only) BuildonStateChangeP. . .before) (read-only)
lliimport net.jazz.rtcext.wnrkit/_ 1limport org.eclipse.core.r (&
12 1Zimport org.eclipse.osgi.u -
13|:i.mpurt org.eclipse.core.runti 13
14import org.eclipse.osgi.util 14import com.ibm.teasm.builc
15 15import com. ibm.team.builc
lodimport com.ibm. team.build.con lodimport com. ibm.team.builc
17import com. ibm. team.build. infg 17import com. ibm.Cesm. proce
18dimport com.ibm. team.build. infg 1Zimport com. ibm.tCesmm. proce
1%9import comw. ibm. Ceam.process. 1%9import com. ibm.Cesm. proce
Z20dmport com. ibm. Ceam.process.d ZO0import com.ibin.Ceam. Proce |.
< > < >

__f. Browse the changes and you will notice these key changes. The additional behavior will
be discussed in detail after the code is loaded.

i. Anew nested class has been added, ParsedConfig. It is a simple structure used
to pass configuration results between the parsing stages. Remember, no instance
state variables in an operation participant!

__ii. Two new parse methods have been added. These perform a two stage parse on
the configuration. Note that doing a two stage parse in this case is not really
needed since the second stage has no real performance implications, but the
pattern will be explained later when you look at the code in detail.

__iii. The run method no longer uses hard coded ids.

Page 106 IBM Rational Team Concert 4.x Extensibility

IBM Software

_g. Close the comparison editor and then in the Pending Changes view, right click the Lab
4 Code baseline under the RTC Extension Workspace node, and then click the Accept
action. This will accept and load the lab 4 delta on top of what you already have loaded

from lab 3.
{2 Problems | €8 Team aAdvisor | B Console | /% Pending Changes 52 =
2 incaming baselines =
,‘:}mv&v@@_&+ g&.:
= [E RTC Extension Warkspace <-= RTC Extension Stream
= iy RTC Extension Lab Code
= ¥ Incaoming
+# & 5:labScCode apr 26, 2010 9:59 A
- [Z] 4:lab 4 Code Apr 26, 2010 9:56 AM
o . ADMIM Lab 4 Code |% Accept Cirl+ShifttF12
= [= netjazz.ricextwork Expand Children Cextfy

S =IN e it =T L —————
= = netjazz.ricextworkitem.extensions. service
(=2 schema
oz build. properties
i plugin.zml
= = retjazz.ricextwarkitem.extensions serviceschema
¥ buildOnStateChange xsd
= = netjazz.ricextworkitem extensions servicefsrc/net/jazz doent v
[Yip BuildOnStateChangeParticipant. java

3. Understanding the schema.

__a. Backin the Package Explorer view, expand the
src/net.jazz.rtcext.workitem.extensions.common source package and then double
click the IBuildOnStateChangeDefinitions.java file.

i. The critical additions to this file are the comments that describe the syntax for the
participant’s configuration XML and the constant definitions that go with them.
Snippets of XML that follow this syntax will be added to the process configuration
of a project or team area using the follow up action.

__ii. The first comment and set of constants defines what how the triggering work item
type and state are configured.

// <trigger>

// <changed-workitem-type id="workitem.type.id"/>
// <trigger-state id="trigger.state.id"/>

// </trigger>

public static final String ID = "id";

public static final String TAG TRIGGER = "trigger";

public static final String TAG CHANGED WORKITEM TYPE = "changed-workitem-type";
public static final String TAG TRIGGER STATE ID = "trigger-state";

Lab 4 — Parameterization Page 107

IBM Software

__iii. The second comment and set of constants defines what how the target build is
configured.

// <build>

// <build-definition id="build.definition.id"/>
// </build>

public static final String TAG BUILD = "build";
public static final String TAG BUILD DEFINITION = "build-definition";

__iv. You may want to keep this file open to reference the syntax comments as you
examine the other files.

__b. Back in the Package Explorer view, expand the first level of the

net.jazz.rtcext.workitem.extensions.service plug-in project and then double click the
plugin.xml file.

__i. Click on the Extensions tab and expand the nodes under the participant on the
left. Note the schema field on the right. Adding this reference to the schema file is
the only change to the plugin.xml file for lab 4. You can close the plugin.xml file

editor.
|J] IBuildCnStateChangebefinitions. java <1+ net. jazz.ricext workitem. extensions service &2 =0
% Extensions O L
All Extensions & E Extension Element Details

Define extensions for this plug-in in the fallowing section. Set the properties of "operationParticipant”. Required fislds

are denoted by "
type filter text

= 4= com.lbm.team. process. service, operation Add...

= [%) [Build on State Change (operationPart| -w Class®: net jazz rtcext.workitem extensio

=-[%] netjazz.ricext waorkitem,extensior name*: Build on State Change
=-[X] {prerequisites)

id*: net. jazz ricext.workitern.extensions. service. b

[com.ibm.team.workitern,se operationld: | corm.ibm.team,workite m.operation, workItems
¥ com.ibm.team.build.interna |schema: schema/buildonStateChange xsd | Browse...
%] cam.ibrm.team.build.interna

¥ (description)

< ¥

Overview | Dependencies | Runtirme Extension Points | Build | MANIFEST.MF | plugin.sml | build. properties

Page 108 IBM Rational Team Concert 4.x Extensibility

IBM Software

c. Back in the Package Explorer view, expand the first level of the schema folder inside
the net.jazz.rtcext.workitem.extensions.service plug-in project and then double click
the buildOnStateChange.xsd file. What editor opens depends on which Eclipse plug-
ins you have installed. If you are just using RTC, you will get a text editor. If you have
Rational Application Developer (RAD) or the Eclipse Web Tools Platform (WTP) installed
along with RTC, you will get a much richer XML schema editor. In either editor, you will
see the definition of one element and three types.

i. The element definition and first type definition define how these schema elements
fit into the overall process definition schema. The first documentation element
explains how the element at the top of this section and the base attribute of this
type establish where this schema extends the base process definition schema.
Note that the process schema is imported and given the XML namespace prefix
“process” in earlier elements. Also, as the documentation points out, the required
and fixed valued id attribute establishes linkage to your participant. Finally, note
that the two nested elements are both required and can occur only once. These
are the “trigger” and “build” elements. The details of the structure of these
elements are defined in the following type definitions.

<xsd:element name="followup-action" substitutionGroup="process:followup-action"
type="buildOnStateChangeType"/>

<xsd:complexType name="buildOnStateChangeType'>
<xsd:annotation>
<xsd:documentation>
This type defines the build on state change type. It is a
subtype of the abstract process:followupActionType. This
restriction, along with the substitutionGroup specification
above, makes it possible to add configuration of the participant
to a project or team area's process configuration. Note the
forward references to the trigger and build types defined below.
Take particular note of the id attribute. It is required and has
a fixed value that points to our operation participant extension.
</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>
<xsd:restriction base="process:followupActionType'">
<xsd:all>
<xsd:element name="trigger" type="triggerType"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="build" type="buildType" minOccurs="1"
maxOccurs="1"/>
</xsd:all>
<xsd:attribute name="id" type="xsd:string" use="required"
fixed="net.jazz.rtcext.workitem.extensions.service.buildOnStateChange"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

i. The second type definition defines the trigger type. It may be helpful to refer to
the simple syntax diagram in the I1BuildOnStateChangeDefinitions.java file as you
look at this type definition. There are also two nested elements defined for this
type that are also required and can only occur once. They will contain the work
item type and state ids (“changed-workitem-type” and “trigger-state”).

Lab 4 — Parameterization Page 109

IBM Software

<xsd:complexType name="triggerType'™>

</xsd:complexType>

<xsd:annotation>
<xsd:documentation>
This type defines the work item type to be monitored
and the work item state that should trigger the
operation participant.
</xsd:documentation>
</xsd:annotation>
<xsd:all>
<xsd:element name="changed-workitem-type" minOccurs="1"
maxOccurs="1">
<xsd:complexType>
<xsd:attribute name="id" type='"xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="trigger-state" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:attribute name="id" type='"xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:all>

The third type definition defines the target build type. It may be helpful to refer to
the simple syntax diagram in the IBuildOnStateChangeDefinitions.java file as you
look at this type definition. There is one nested element defined for this type that
is also required and can only occur once. It will contain the build definition id
(“build-definition”).

<xsd:complexType name="buildType">

</xsd:complexType>

<xsd:annotation>
<xsd:documentation>
This type defines the build to run. At this point, it just
includes the build definition id. In the future, it could
include more information, for example, a list of properties
to pass to the build.
</xsd:documentation>
</xsd:annotation>
<xsd:all>
<xsd:element name="build-definition" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:attribute name="id" type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:all>

_ 4 Understanding the build on state change participant code changes.

__a. Backin the Package Explorer view, expand the
src/net.jazz.rtcext.workitem.extensions.service source package and then double click
the BuildOnStateChangeParticipant.java file.

Page 110 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. First, make sure the breakpoint at the start of the run method is still present and active. If
it is not, add the breakpoint again by double clicking in the left margin next to the first
line.

c. The changes in this class are all about using the configured ids as opposed to the hard
coded ids. There is a two stage parse used. As noted in the large comment block in the
run method that starts with “Perform the first stage of configuration
parsing”, a single stage would be fine in this case since none of the parsing has
important performance considerations. However, the pattern can be useful in some
common scenarios and needs to be illustrated.

d. Just below that comment in the run method, note how the work item type id is now used
from the configuration. You will look at the two new parsing methods soon.

ParsedConfig parsedConfig = new ParsedConfig();
parseConfigl (participantConfig, parsedConfig);
String newType = newState.getWorkItemType () ;

/*
If the work item is not of the proper type, do not build. If
* the work item type id is null, the test will return false and
* a build will not be attempted.
*/
if (newType.equals (parsedConfig.fWorkItemTypelId)) {

__e. Just after that, note how the work item state id is also used from the configuration.

/*
* Finally, if the new state is the target state, build.
* Again, a null id is handled in the same manner.
*/
if (newState.getState2().getStringIldentifier () .equals
parsedConfig.fWorkItemStateId))

f. Finally, in the run method, note that only if it is known that a build is needed then the
second stage of the parse is performed and the build is requested using the build
definition id from the configuration and that a null id means no build to run. Also note that
the build method has not changed at all.

/*
* Now it is time for the second stage of the
* configuration parse. Only build if the build
* definition id is not null.
*/
parseConfig2 (parsedConfig) ;
if (parsedConfig.fBuildDefinitionId != null)
build(parsedConfig.fBuildDefinitionId, collector);

Lab 4 — Parameterization Page 111

IBM Software

-9

The other major change to this class, of course, is the addition of the two parsing
methods and the structure used with them to pass the intermediate (after parse 1 but
before parse 2) and final parsing results around the participant. The structure is very
simple as shown here. The first three fields are filled in by parse 1. Parse 2 uses the
cached third field to fill in the final field. Recall that there are two stages since you are
pretending that retrieving and/or calculating the build definition id is expensive and it
should only be done if required. This is not really true, but illustrates a useful pattern.

/**
* This class is used retrieve results from the participant
* configuration parsing methods.
*/
private class ParsedConfig {
public String fWorkItemTypeld = null;
public String fWorkItemStateId = null;
public IProcessConfigurationElement fBuildConfigElement = null;
public String fBuildDefinitionId = null;

The first parse method looks more complicated than it is. The first thing to know is that
the participantConfig parameter passed in via the run method is as described as follows
in the run method comment. The required single occurrence “trigger” and “build”
elements are children of this element.

participantConfig

the configuration element which configures this participant;
this corresponds to the XML element which declares this
participant in the process specification/customization.

<p>
This participant obtains the trigger work item type and state

from this parameter. The build definition id is also found
here.

b S . S . S

Page 112

IBM Rational Team Concert 4.x Extensibility

IBM Software

i. The code in the first parse method loops through the children of the parent configuration
element and looks for the “trigger” and “build” elements. When it finds the “trigger”
element it parses deeper to get the work item type and state ids. When it finds the “build”
element, it simply caches the element in the proper field of the parseConfig parameter
for use by the second parse method. As can be seen here, the deeper parse of the
“trigger” element follows the same loop and examine pattern on the children of the
“trigger” element.

if (element.getName () .equals (
IBuildOnStateChangeDefinitions.TAG TRIGGER)) {
/*
* Found a trigger definition. Cycle through its child elements
* to find the work item and state ids.
*/
IProcessConfigurationElement[] children = element.getChildren();
for (int i = 0; i < children.length; i++) {
IProcessConfigurationElement child = children(i];
String elementName = child.getName () ;
if (elementName
.equals (IBuildOnStateChangeDefinitions.TAG CHANGED WORKITEM TYPE)) {
parsedConfig.fWorkItemTypeId = child
.getAttribute (IBuildOnStateChangeDefinitions. ID);
} else if (elementName
.equals (IBuildOnStateChangeDefinitions.TAG TRIGGER STATE ID)) {
parsedConfig.fWorkItemStateId = child
.getAttribute (IBuildOnStateChangeDefinitions. ID);
}

}
} else if (element.getName () .equals (IBuildOnStateChangeDefinitions.TAG BUILD)) {

/*

* Found the build definition. For now, just set aside the

* element. It will only be parsed if we need to run a build.
*/

parsedConfig.fBuildConfigElement = element;

Lab 4 — Parameterization Page 113

IBM Software

k.

The second parse method uses a similar pattern but is a bit simpler since it has less to
parse and the “build” element has already been cached. Note the check for null at the
start of the method to make sure the “build” element really was found by the first parse
method.

/**
* Second stage of the configuration parsing that handles the build
* definition.

*
* parsedConfig
* the build definition element is now parsed and the build
* definition id is updated. Note that the id is not validated by
* this method and may still be null.
*/
private void parseConfig2 (ParsedConfig parsedConfig) {
if (parsedConfig.fBuildConfigElement != null) {
IProcessConfigurationElement[] children =

parsedConfig.fBuildConfigElement.getChildren() ;
for (int 1 = 0; i < children.length; i++) {
IProcessConfigurationElement child = children([i];
String elementName = child.getName () ;
if (elementName
.equals (IBuildOnStateChangeDefinitions.TAG BUILD DEFINITION))
parsedConfig.fBuildDefinitionId = child

.getAttribute (IBuildOnStateChangeDefinitions. ID);

You can now close all your open editors and proceed to the next section to configure and
again step through the configured follow-up action.

4.2 Launch the Server for Debug Using Jetty

_ 5. Use the existing launch configuration from lab 2.
a. From the Debug toolbar dropdown (L) in the toolbar, select [RTCExt] Build on
State Change - Jetty RTC Server.
b. As before, the Console view will show a few log messages indicating that the Jetty
server is up and running.
¥ Tasks | Z: Problems | s Pending Changes |+’ Search |gv JUnit | El Console
[RTCExt] Jetty RTC Server [OSGi? Launch] CARTC30Dewinstalls\TeamConce
2011-02-02 16:59:58.022::INFO: Logging to STDERR
2011-02-02 16:59:58.272::INFO: Jetty-6.1.x
2011-02-02 16:59:58.676::INFO: Started SocketCon
2011-02-02 16:59:59.285::INFO: Started SslSocke
Page 114 IBM Rational Team Concert 4.x Extensibility

IBM Software

4.3 Launch an RTC Client and Configure the Participant

__ 6. Launch the RTC Client.

__a. From the dropdown menu of the Run toolbar icon, select [RTCExt] RTC Eclipse Client.
Note that you are just running the client and not debugging. The same launch
configuration can be used for both. You will debug a client in a future lab. If prompted do
not clear the runtime workspace. You will probably answer no for this question for the
rest of this workshop. You can turn off the prompt by editing the launch configuration.

Prla~ &g~ ®@sv sivivieoy
@ 1 [RTCExt] Build on State Change - Jetty RTC Server

|¢= 2 [RTCExt] RTC Eclipse Clientl

% 3 [RTCExt] Jetty RTC Server

% 4 [RTCExt] Create RTC Test Database

Run As 4
Run Configurations...

Organize Favorites...

b. The RTC Eclipse client will start up and will connect automatically to the Jetty server you
just launched via the repository connection you created in lab 2. The project area will still
be connected; however, you do have some more work to do this time. The participant is
still added as a follow-up action on work item save, but it has not been configured with
the required work item type, state and build definition ids. You need to fix this.

7. There are two steps required to fix the build on state change participant that is currently
configured for your test project. In this first step, you will make sure the XML generated from
adding the participant is associated with the schema you just added.

a. Inthe Team Artifacts view, right click the Test Project 1 project area and then click the
Open action in the menu.

earm Artifac 2 Team Central | g My War
e Artifacts 52 o ST Central | S My Work | = O

All Project and Team Areas (2 of 2 areas selected)

-+l . o, wEe fan
- tad LEr | A

L[Repository Connections
+ iﬁheat Project 1 [Iucalhustﬂ

[34 Favorites e J
+-lyz Feeds Show in Tearn Organization
#-[73 My Repos Cpen
-85 My Team
+-% work Tter

Cpen Web LI for Project
2 Open My User Editor
Y

e csail. .-"""*‘-:r'\ 'HMJ -

Lab 4 — Parameterization Page 115

IBM Software

b. In the project editor that opens, switch to the Process Configuration tab and then on
the left, expand the Team Configuration tree then select Operation Behavior. Then, on
the right, scroll down to the Work Items > Save Work Item (server) operation and
select the Everyone (default) column next to it as shown here.

2] Test Project 1 &3
B Project Area ~

?
o

Test Project 1 “
&

Configuration g Operation Behavior
i Roles Select a cell in the table below to configure the precurf
+ 1 Project Configuration carresponding operation and role. |
i N
=& Ieam [:u-nﬁ-guratlun Preconditions are checked before running an Dperaticurg
Lv Permissions operation's preconditions and follow-up actions can be
@ Operation Behavior operation configurations completely replace each Dﬂ#
R Event Handling (unconfigured) choose the most appropriate operation configuration ﬁn
o0 Tteration Types preconditions and fallow-up actions defined in that |:
B B .
& Timelines Operations Everyone .. F'rcu:T
+-Build
+- Dashboards
+-Planning
+-Process
+- Reports
=-Source Contral
Deliver (client) {24

Deliver {server)
Save Change Set Links ar
Wiork Items
Save Work Ttem (server) | Eal

\\ ‘*’M‘\

_‘

The Save Work Item operation is executed wheneve

£
Cweryiew |Links | Process Configuration |Process Configuration Source | Access Control | Work Them Ca(__

c. Scroll down to find the Follow-up actions section on the right, remove the Build on
State Change participant that is already in the list and then add it back in again. This
may seem unusual, but there is a good reason for it. If you looked at the XML for the
participant before and after doing this, you will notice one key difference, that is, the
addition of an xmins attribute that references the schema. The XML validator for the
process configuration uses this information to produce the proper error messages for
incorrect or incomplete (your case here) process configuration elements.

d. Press Save in the upper right corner of the editor to save this change.

Page 116 IBM Rational Team Concert 4.x Extensibility

IBM Software

8. In this second fix up step, you will actually configure the required work item type, state and build
definition ids.

a. Switch to the Process Configuration Source tab. Right click in the left margin and from
the menu, select Folding > Expand All. You will then see in the right margin and small
red rectangle indicating an error. Left click the small red rectangle and the editor will
scroll to the line with an error. The error will be further indicated by a red circle with an X
in the left margin and a red squiggly underline.

I Test Project 1 &3 = 0O
& Project Area ~ o
Test Project 1 Show in Tearm Organization Open Web UI for Project
<properties workItemTvypelategory="cc A B
| Faolding >| v Enable Folding CtrHhumpad_Divide
Showe Quick Diff CirHShift+; | Expand All Cir Hhumpad_Multiply
Showe Line Mumbers Collapse All Ctr +ShiftHhumpad_Divide
Preferences... Hditionss
TOTTOwHp-actions>
(%] <followup—action xmlns="http://net.jazz.

‘R\\\ </followup-actions:>
</operationz

<operation id="com.ibm.tCeam.scm.client.deliver ™
<preconditions>
<precondition xmlns="http://com. ibm. te
<precondition ®Xmlns="http://com. ibm. tean
<precondition ®mlns="http://com. ibm. tean"
<requires value="workitem—or—-conmment ™
< }
Cwverview |Links |Process Configura... |Process Configura... | Access Contral | ™

b. Hover your mouse over the red circle with the X in the left margin and you will see the
following message describing the error. Because you have created a schema and linked
it to your participant extension point, the process editor is aware that the configuration of

the follow-up action is not complete.

cwc-complex-type . 2.4.b: The content of element followup-action' is not completa. Cne
of {"hitlp: /fnet. jazz.ricext. warkitem. extensions. service /server buildOnStateChange":
trigger, "hitlp: /fhet. jazz. ricext. workitem.extensions.service/server buildOnStateChange™:
build}' is expacted.

Lab 4 — Parameterization Page 117

IBM Software

c. Since you do not yet have an editor for your XML aspect (next lab), you will need to edit
the XML by hand. Here is what the followup-action element and its children should end
up looking. You do not need to type all of this or rely on your typing skills to get the
syntax just right. You can use Ctrl+Space to use context sensitive code assist. Do note
the values of the ids. They are the same as the ones that use to be hard coded in the
participant.

<followup-action
xmlns="http://net.jazz.rtcext.workitem.extensions.service/server/buildOnStateChange"
description="When the specified work item type changes to the specified state, the
specified build will be requested."
id="net.Jjazz.rtcext.workitem.extensions.service.buildOnStateChange"
name="Build on State Change">
<trigger>
<changed-workitem-type id="com.ibm.team.apt.workItemType.story"/>
<trigger-state id="com.ibm.team.apt.story.tested"/>
</trigger>
<build>
<pbuild-definition id="our.integration.build"/>
</build>
</followup-action>

d. First, change the existing followup-action element to have an explicit end tag. That is,
change the /> at the end of the existing tag to just > and then add a </followup-action>
end tag on a new line after the existing tag. Also leave a blank line between the two. It
will now look like this.

<followup-action
xmlns="http://net.jazz.rtcext.workitem.extensions.service/server/buildOnStateChange"
description="When the specified work item type changes to the specified state, the
specified build will be requested."
id="net.jazz.rtcext.workitem.extensions.service.buildOnStateChange"
name="Build on State Change">

</followup-action>

On the blank line, after indenting a tab if you wish, hit Ctrl+Space and you will see a list
of valid elements to place at this point. Choose “trigger” from the list. It will now look like
this.

<followup-action
xmlns="http://net.jazz.rtcext.workitem.extensions.service/server/buildOnStateChange"
description="When the specified work item type changes to the specified state, the

specified build will be requested."
id="net.jazz.rtcext.workitem.extensions.service.buildOnStateChange"
name="Build on State Change">
<trigger></trigger>
</followup-action>

Page 118 IBM Rational Team Concert 4.x Extensibility

IBM Software

Add another blank line after the line you just added, use Ctrl+Space again and this time
select “build” from the list. It will now look like this.

<followup-action
xmlns="http://net.jazz.rtcext.workitem.extensions.service/server/buildOnStateChange"
description="When the specified work item type changes to the specified state, the
specified build will be requested."
id="net.jazz.rtcext.workitem.extensions.service.buildOnStateChange"
name="Build on State Change">
<trigger></trigger>
<build></build>
</followup-action>

Place your cursor between the “trigger” start and end tags and use Ctrl+Space again
(you may first want to hit enter a couple times first to add a blank line between them and
perhaps add some tabs to make it look better). Select “changed-workitem-type” from the
list. You will need to add the id value of com. ibm.team.apt.workItemType.story.
It will now look like this.

<followup-action
xmlns="http://net.jazz.rtcext.workitem.extensions.service/server/buildOnStateChange"
description="When the specified work item type changes to the specified state, the
specified build will be requested."
id="net.Jjazz.rtcext.workitem.extensions.service.buildOnStateChange"
name="Build on State Change">
<trigger>
<changed-workitem-type id="com.ibm.team.apt.workItemType.story"/>
</trigger>
<pbuild></build>
</followup-action>

Continue in the same manner to add the “trigger-state” element inside the “trigger” and
the “build-definition” element inside the “build” until it looks like the finished product noted
previously.

The trigger-state id should be: com.ibm.team.apt.story.tested
The build-definition id should be: ocur.integration.build
e. Click Save at the top right of the project area editor. Your follow-up action is now properly

configured. Leave the editor open at this point. You will soon come back here and
make a small change.

Lab 4 — Parameterization Page 119

IBM Software

4.4 Trigger the Participant

9. Find the Story work item used in lab 2 and 3 (it is probably number 7) and then move it out of the

Implemented state (via the Reopen action) or create a new story.

a.

Either of these will cause the breakpoint you set earlier to trigger. If not, re-check the
breakpoint is at a valid source code line. The RTC Eclipse client in which you were
studying the code will now surface (if asked about switching to the debug perspective,
click Yes). If it does not surface, you probably minimized it earlier. In this case, it will be
flashing in the Windows taskbar. Click it in the taskbar to surface the debugger.

Step through the run method using the Step Over button (@') or F6. When you get to

the configParse1 method call, click the Step Into button (2.) or F5 in order to step
through the first stage of the parse. Eventually, the check for the target state will fail and
the run method will exit without requesting a build. In any case, be sure to click the

resume button (1%).

Switch back to the RTC Eclipse client where you created the work item. Your work item
will be successfully saved. If it shows a failure due to timeout, close the editor without
saving, recreate the Story (or reedit the existing Story) and when the breakpoint hits, just

use the resume button (*%).

__10. Move the Story to the Implemented state.

_a.

At the upper right portion of the work item editor, select Set Implemented or Complete
Development (depends on which workflow state the story is currently in) and then click
Save.

ff 20 = O

& & EE P Save

uild stuff o [In Progress v]

MTAT M N B

Page 120

IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Once again the breakpoint is hit and your debugger surfaces (or you need to click it in
the Windows taskbar). Step through the code again. If you wish, you can step into the
parseConfig1 method but it will do exactly the same thing it did last time. As you step
through the run method, the state check will pass this time and a build will be run. When

you get to the call to the parseConfig2 method, use the Step Into button (-). You can
then step through this method for the first time. When you get to the call to the build
method, you can step in or not. It has not changed in this lab. Remember to click the

resume button (”E') when done stepping.

c. Switch back to the RTC Eclipse client where you created the work item. Your work item
will be successfully saved. If it shows a failure due to timeout, try saving again and when
the breakpoint hits, just use the resume button (”E').

d. If you go to the Team Advisor view and check to make sure the Show Failures Only
filter is off and Show Detail Tree is on (see highlight below), you can browse the results

of this successful operation. Also, if you double click our.integration.build in the Team
Artifacts view, the Builds view will show a new pending build request.

Bl Work Ttems (7 Tag Cloud |2 Problems |6 Team Advisor 53 . &% Builds =0
O~ - [P]E]R ~
Time ...
- ¢® Save Work Item [server] 3:50:18 0.05 s Info
o - : — : A new build request for buid definition
&e Required Properties 0.00s 'our.integration.build' was subrmitted.
=g Build on State Change 24,94 5
v Build request successful | Reason
H - When the spedified work item type changes to the
&% Request Build [server] 3:50 0.41 s specified state, the specified build will be reguested.

=y did this hapnen?

Lab 4 — Parameterization Page 121

IBM Software

4.5 Change the Build Id in the Configuration and Try Again

11. Return to the Test Project 1 project area editor and change the build id.

a. The editor should still be open to the XML you edited earlier. Find the build-definition
element and change the id attribute to our.integration.build.bogus and then
click Save at the upper right of the project area editor. The configuration will now look like

this.

<followup-action
xmlns="http://net.jazz.rtcext.workitem.extensions.service/server/buildOnStateChange"

description="When the specified work item type changes to the specified state, the
specified build will be requested."

id="net.jazz.rtcext.workitem.extensions.service.buildOnStateChange"

name="Build on State Change">

<trigger>
<changed-workitem-type id="com.ibm.team.apt.workItemType.story"/>

<trigger-state id="com.ibm.team.apt.story.tested"/>
</trigger>
<build>
<build-definition id="our.integration.build.bogus"/>
</build>
</followup-action>

__12. Move the story to the Implemented state again.

__a. Switch back to the work item editor and select Reopen from the state dropdown and

then click Save. When the debugger surfaces, just click the resume button (”E'). You are
not to the interesting bit yet.

*] @: a5 3 user, I want to build stuff 22 - O aur.integration.build.renamed = O
&] Story 8 ~ =l S
Summary: ™ As a user, I want to build stuff = |Implemented b

. Implermented
~ Details Complete Testing
Type: ®] |Story > SE?;E”
Filed &gainst: Test Project 1 | 2 Reject

e SN PR s RN

Page 122 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Again in the work item editor, select Complete Development from the same dropdown
and click Save again.

*] 8: &5 3 user, I want to build stuff 22 . O aour.integration.build.renamed =
& Story 8 ~ & W P
Surnmary:™® | As & user, want to build stuff ED |In Progress w

= I Progress
~ Details p

Type: ®] |Stor w| |SetDone
" ! Defer
Filed Against:™ Test Project 1 w | G5 Reject

c. This time, when the debugger surfaces, you can step into the configParse2 method to
confirm that the new build definition id is returned or you can simply hit resume and trust
that the build definition will not be found as expected. Once you do click the debugger’s
resume button, switch back to your work item editor and note the error.

] %70 A5 3 user, [want to build stuff 22 - O our.integration. build.renamed = O

@ Story 7 ~ Unahle to request huild B E e

Summary:™® | As 3 user, I want to build stuff B |Complete Development |+

~ Details + Description ’Al
"*ﬂqgﬁg‘“wh.""#“J‘-L%’H~ '. |

d. The Team Advisor view has more information on the error. The left side of the view
shows the structure of the error condition. Click the nodes on the left to see what
information is available. You can see here that the changed build definition id was used.

Bl work Items | [Tag Cloud |2 Problerms | 282 Team advisor 52 . &% Builds =0
& - - [E% T
Time ...
= ¢® Save Work Item [server] 3:26: 0.02 s Prublem

- ' finition
=-&% Build on State Change 2.80 = ‘our.integration, build bogus'|could not be found.

@ fUnable to request build §

Reason

when the specified work item type changes to
the specified state, the specified build will be
requested.

9=l ywhy did this happen?

e. Switch back to the project area editor and change the ID back to
our.integration.build and click Save.

Lab 4 — Parameterization Page 123

IBM Software

Switch back to the work item editor and click Save. When the debugger surfaces, just
click resume and the work item save should complete okay. Return to the work item
editor to confirm this. If you go to the Team Advisor view and the Show Failures Only
filter is off, you can browse the results of this successful operation. Also, if you refresh
the Builds view, you will see another new pending build request.

__13. Close down the launched client and server.

Close the RTC Eclipse client where you were working with the Story and project area.

Back in the original RTC Eclipse client's Console view, click the Terminate icon, remove
all terminated launches and check no launch is still running.

¥ Tasks gt 1Unit ,;"'Search CRRETNA S o B-ri- T O
Build on State Change - Jetty Jazz Server [0SGi2 Launch] DR TC20020evjazzhclientheclipsetjdkhbint java
at org.mworthay.http.HttpConhection. handle (HoetpConnection. java:gi?a

at org.morthay.http. Socketlistener.handleConnection (3ocketlistene

at org.morthay.util. Threaded3erver.handle (Threadedierver. java:357

at org.mortbhay.util.ThreadPooliPoolThread.run(ThreadPool. java: 534
w

< »

You have completed lab 4. You can now configure your follow-up action to
react to any work item type and state. You can also configure it to run any
build. Cool! If you want, you can add multiple instances of the follow-up
action to a project or team area and configure each one differently to
handle multiple needs.

Page 124

IBM Rational Team Concert 4.x Extensibility

IBM Software

Lab 5 Adding an Aspect Editor

Lab Scenario

No more hard coded ids! Your scrum masters must be thrilled now! Well,
not quite. They do not like messing with the process configuration XML.
You explain that it is some really simple XML and that assistance is
available via Ctrl+Space, but to no avail. Time to brush up on your Ul
design skills. You will create a simple editor for the participant’s aspect
editor, an editor responsible for the participant's XML aspect (the small
XML bit defined by the participant’'s schema that extends the process
schema).

If your RTC server is not running, start it now (C: \RTC40Dev\in-
stalls\JazzTeamServer\server\server.startup.bat).

5.1 Understanding the Aspect Editor

1. If your RTC development environment is not open, navigate to
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse in the Windows explorer
and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one
you used in lab two. If the Plug-in Development perspective is not open, open it now by
selecting Window > Open Perspective > Other... > Plug-in Development from the menu bar.

2. Browse and load the Lab 5 code.

__a. Inthe Pending Changes view, click the Expand to Change sets icon. This will show 1
incoming baseline as shown here.

{2 Problems | 488 Team advisor | & Console | A Pending Changes 52 = B
1 incaming baseline =
Fr AL EE "¢

o [E] RTC Extension \Warkspace <-= RTC Extension Stream
- g RTC Extension Lab Code
= ¥ Incoming
+ [£] 5:Lab 5 Code Apr 26, 2010 9:53 AM

Lab 5 — Add an Aspect Editor Page 125

IBM Software

Right click the Lab 5 Code change set under the RTC Extension Workspace node, and
then click the Expand Children action. This will reveal all the changes made for lab 5.
As you can see the full change is the addition of a new plug-in project. The first entry
shows a folder addition to the root. That folder contains all the other additions in the
following changes. You will next load the code and then go through it in detail.

= O

[Problems | 8§ Team advisor | Bl Console | /4 Pending Changes 27

1 incoming baseline

S AL ¢ EE % =
= [E RTC Extension Warkspace <-= RTC Extension Strearm
= iy ETC Extension Lab Code
= ® Incaming
| 5: Lab S Code Apr 26, 2010 9:59 AM
= . ADMIN Shar %, aAccept Cir+shift+F12
g =/
(= nelk
= = netjazz.ricext workitem.extensions. ide.ui
[.settings
=5 META-TMF

[=rC
e SVUD S W5 l}r“m ‘/‘1..-.

In the Pending Changes view, right click the Lab 5 Code baseline under the RTC
Extension Workspace node, and then click the Accept action. This will accept and load

the new lab 5 plug-in project.

Expand Children

[Problems | 8 Team advisor | B Console | /A Pending Changes &2

1 incoming baseline

S AL G EE Q@ -
= [E RTC Extension Warkspace =-= RTC Extension Stream
= iy RTC Extension Lab Code
= (# Incoming
= S:Lah 5 Code Apr pEo0inc.sn s
o . ADMIN Share | Accept
2 =/ Expand Children
[=a net. jazz .
= = netjazzricextworkitem. extensions. ide.u
[=a .settings
[MET A-INF

B UL ., AU W ST S

Cir [+Shift+F12

Page 126

IBM Rational Team Concert 4.x Extensibility

IBM Software

__d. If you see the following message select Yes

49 Accepting change sets &J
[These file additions have siblings loaded. Do you also want to load the additions
: now?

[Rerember my decision

Yes J | Mo ‘ [Details » =

LS A

_ 3. Understanding the aspect editor plug-in.

a. Inthe Package Explorer view, expand the tree for the new user interface project
(net.jazz.rtcext.workitem.extensions.ide.ui) and double click the plugin.xml file. The
editor that opens presents information from not only the plugin.xml file but also the
build.properties and META-INF/MANIFEST.MF files. As before, the content reflects
standard Eclipse plug-in practices. Note on the Overview page that there is one
significant difference, the addition of an activator class. More on that later when you take
a look at that class. Also note on the Dependencies page that this plug-in depends on,
among other things, the common plug-in but not the service plug-in. The common plug-
in, as the name implies, is deployed on both the client and server. The service, just on
the server and the aspect editor, just on the client.

b. Once again the most interesting part is on the Extensions tab. On the left side, you see
an instance of the com.ibm.team.process.ide.ui.processAspectEditorFactories
extension point. All client side aspect editor factories are defined using this extension
point. An aspect editor factory is a class that knows how to construct an aspect editor for
one or more process XML aspects. Note that the tree is a structural editor for the xml that
comprises the definition. The text in parenthesis on each line is the name of the xml
element for that line. The raw xml can be seen on the plugin.xml tab of the editor.

Lab 5 — Add an Aspect Editor Page 127

IBM Software

It net. jazz. ricext workitem.extensions. ide.ui 52 =0
% Extensions Q@
All Extensions A E Extension Details
Define extensions for this plug-in in the Set the properties of the selected extension,
following section. Required fields are denoted by "*",
type filker text ID:

= =I=|cum.ibm.team.pruceas.idEI Mame:
(%] (factory)

= Show extension point description

=1 Open extension point schema

4{;‘" Find declaring extension point

Crverview Dependencies |Runtime Extensiu:un Points | Build | MANIFEST MF | plugin.ml | **

__¢. Select the (factory) node in the tree on the left and the right side of the editor will look
like the following. The aspectld is set to the same value as the participant’s id in order to
create a link from adding the participant to the process and knowing that this factory

needs to be invoked to get the aspect editor. The class is set to the factory class. More
on that class later when you take a look at it.

Extension Element Details
Set the properties of "factory". Required fields are denoted by "*",

aspectld®: | netjazz.ricext workitem.extensions. service. buildOnStateChanc
Class™. net. jazz.ricext work item. extensions. ide.ui. AspectE

__ 4. Understanding the aspect editor code.

__a. Backin the Package Explorer view, expand the
src/net.jazz.rtcext.workitem.extensions.ide.ui source package and then double click
the WorkitemExtensionsPlugin.java file. This is the plug-in’s activator class mentioned
earlier. This is a very simple class as explained by the class comment.

*

Eclipse bundles can optionally contain an activation singleton that is
invoked when the bundle is first loaded, usually lazily as in this case. This
activator does not do anything interesting on start or stop. However, it is
also common practice to have the activation class provide some basic common
services that are needed by other classes in your bundle. In the case here,
we have common error logging methods for use by the classes in the bundle.

P S T

~

Page 128 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Back in the Package Explorer view, double click the AspectEditorFactory.java file.
This is the aspect editor factory class mentioned earlier.

__i. This is a very simple class as explained by the class comment. Note that it
implements the IProcessAspectEditorFactory interface as required by the process
editor framework.

/**
* This factory class is configured in the aspect editor extension point, not
* the aspect editor class itself. One factory may be configured to construct
* several aspect editors. The process framework passes in the id of the aspect
* so that the factory knows which to create.
*/
public class AspectEditorFactory implements IProcessAspectEditorFactory {

__ii. Itthen implements the one method in the interface in a rather straight forward
manner. An instance of the BuildOnStateChangeAspectEditor class is returned.
You will look at that class real soon.

*

This is the factory method called by the process framework to get the
aspect editor.

processAspectId
the aspect id as configured in the extension point. One
factory may be configured to construct several different
aspect editors.
the aspect editor

L S S T . S S

~

public ProcessAspectEditor createProcessAspectEditor (String processAspectId) {
/*
* If the aspect id is recognized, return the proper aspect editor.
*/
if (processAspectlId.equals (IBuildOnStateChangeDefinitions.EXTENSION ID))

return new BuildOnStateChangeAspectEditor () ;
}

/%
* It should never happen that an unrecognized id is passed to this
* method, however, it is common practice to handle that case by
* throwing an illegal argument exception.
*/
throw new IllegalArgumentException (NLS.bind("Unknown aspect id: {0}",
processAspectId)) ;

c. Back in the Package Explorer view, double click the BuildOnStateChangeModel.java
file. The class provides a simple get and set interface for the ids. The class encapsulates
reading and writing the XML aspect. There are a few special things about this class as
you will see next.

i. The get methods are straight forward; however, the set methods are a bit atypical.
For example, the set method for the work item type id. Note that the id is
normalized (trimmed and never null) and that true is returned if the value actually
changed.

Lab 5 — Add an Aspect Editor Page 129

IBM Software

/**
* Set access method for the work item type id. The id is normalized and
* true is returned if a changes is actually made.

*

* workItemTypeld

* the work item type id to set

* true if the value changed, false if it did not
*/

public boolean setWorkItemTypelId(String workItemTypeId) {
boolean changed = false;
String normalizedId = normalize (workItemTypeld)
if (!fWorkItemTypeld.equals (normalizedId)) {
fWorkItemTypeId = normalizedId;
changed = true;
}

return changed;

__ii. The readFrom method should look familiar. It is basically the same as the parse
methods that were added to the participant implementation in the last lab. A root
object, in this case an IMemento, is passed in and the descendent nodes are
searched for the values that are then set into this model. Notice that this method
uses the exact same constants from the common plug-in as the participant for the
element and attribute names. Note that the root memento comes from the
process framework via your aspect editor and that the framework handles the
physical reading and parsing of the XML.

__iii. The saveTo method is the readFrom method’s opposite. All the elements and
attributes are always written (they are all required and they all can only appear
once). The ids are never null; however, they may be empty strings. This leads to
a rather straight forward implementation where descendants of the passed
memento are added in a fixed manner. Note that the root memento comes from
the process framework via your aspect editor and that the framework handles the
physical writing of the XML.

Page 130 IBM Rational Team Concert 4.x Extensibility

IBM Software

d. Back in the Package Explorer view, double click the
BuildOnStateChangeAspectEditor.java file. The class provides the actual aspect
editor. It is instantiated by the factory and uses the other classes to get its work done.
This class is easily the most complicated class in this workshop. You will probably need
to debug through parts of it a few times to fully understand it. Here is an overview of
each method and type.

__i. The class extends the OperationDetailsAspectEditor abstract class.

*

The configuration information for an operation participant is stored in the
project or team area's process configuration XML. The process framework
manages the overall document. For extensions from other components, like this
one, the process framework delegates editing of the relevant XML, an aspect,
to an aspect editor. The process framework is able to learn from our schema
exactly which aspect of the XML to delegate to this editor.

EE S S S

This class is an aspect editor for the details of the build on state change
follow-up action for work item save. The user can select ids from comboboxes.

*

*/
public class BuildOnStateChangeAspectEditor extends
OperationDetailsAspectEditor {

__ii. There are four inherited abstract methods that must be implemented.

¢ restoreState (IMemento memento) Which passes through to the
readFrom (IMemento memento) method on the model class you just studied.
Note that this method is always called before createControl.

¢ saveState (IMemento memento) Which passes through to the
saveTo (IMemento memento) method on the model class you just studied.

¢ dispose () which does nothing.

¢ createControl (final Composite parent, FormToolkit toolkit) which
as the name implies is suppose to create the user interface controls for the
aspect editor. The parent composite created by the process editor framework is
passed in along with a form toolkit.

Lab 5 — Add an Aspect Editor Page 131

IBM Software

*

Called by the process editor framework when the user decides to edit the
settings for the build on state change operation participant.

parent
the composite provided by the framework to hold the controls.
This method must set the appropriate layout on this composite.

toolkit
a control factory provided by the framework. The process
framework specializes the Eclipse UI form toolkit so that the
underlying controls behave properly in the process
configuration editor. All controls are either created directly
from the toolkit or passed to the toolkit's adapt method right
after creation. This makes the aspect editor creator's job
much easier with regard to the proper process configuration
editor look and feel. Note that the control decorations are
not adapted to the toolkit.

L T S S R I S A

~

public void createControl (final Composite parent, FormToolkit toolkit) {

e. As shown in the implementation of the createControl method, there are three basic
steps: create the controls, establish the layout data and initialize the user interface
values. The implementation of the createControl method looks rather straight forward;
however, the methods that are called from here are rather complex. Let’s look at them
and all the other methods and nested types grouped by purpose.

i. The first group is used to create the user interface controls. They include
createTriggerControls and createBuildControls. These two methods do exactly
what their names imply. In addition, they add listeners to the comboboxes to
detect changes in selection of the ids.

__ii. The second group is for initialization of the user interface. They include initUl and
initStates.

+ The initUl method is only called once for any aspect editor instance from the
end of createControls. It sets the list of values for each combox and then uses
the model to select the proper element of each combobox.

¢ The initStates method is broken out from the initUl method (initUI does call it)
because it is also needed from the selection listener on the work item type
combobox. When the work item type changes, the list of valid states can also
change. This method sets the list of values for the work item state combobox
and uses the model to select the proper element.

__iii. The third group is used from the combobox selection changed listeners (and a
couple other locations) to validate user selections.

+ The validateSelections method is called whenever a new value is set or
selected in the user interface to make sure the user is properly informed as to
the validity of the selections.

Page 132 IBM Rational Team Concert 4.x Extensibility

IBM Software

+ The setValidationMessage method is use by validateSelections to actually
manipulate the Ul elements that are used to inform the user of validation
issues.

__iv. The forth group includes the getModel, restoreState and saveState
implementations. The getModel method is a straight forward lazy evaluation
method for the model instance. The other two pass through to the model as
described earlier.

v. The fifth group includes the getWorkltemCommon and getWorkflowManager
methods. These two methods obtain and cache the service objects used to obtain
the list of work item types and work item states configured for the project area in
which the aspect is being configured. These services are used more than once
and are therefore cached. The service used to get the build definitions is only use
once per aspect editor instance so it is not cached.

vi. The sixth group includes getWorkltemTypes, getStatesForTypeCategory and their
related nested types: WorkltemType and WorkltemState.

+ The nested types are rather simple. Each instance contains the item’s id, name
and display name. An array of each of these is set as the values for the
comboboxes. The comboboxes access the display name via the toString
method on each of these nested types. Note that each instance of
WorkltemType contains its array of valid WorkltemState instances (the code is
actually optimized such that types from the same type group reference the
same array of states).

+ The getStatesForTypeCategory method returns an array of WorkltemState
instances that are valid for the passed workflow id.

+ The getWorkltemTypes method returns an array of WorkltemType instances
that are valid for the project area. It only calculates the list once per aspect
editor instance. It also contains the optimization around lists of states for work
item types in the same type group. It only calls getStatesForTypeCategory
once for each type category.

__vii. The seventh and final group includes the getBuildDefinitions method and the
BuildDef nested type.

+ The nested type is quite simple. It just contains the id. The toString method is
overridden to return the id for display in the combobox.

+ The getBuildDefinitions method returns an array of BuildDef instances that are
valid for the project area. It only calculates the list once per aspect editor
instance.

Lab 5 — Add an Aspect Editor Page 133

IBM Software

5.2

-9

_a.

Next there is the issue of setting breakpoints for your upcoming debug session(s).
Recommended locations include the beginning of the createContol method and the
beginning of the selectionChanged method of each selection listener attached to a
combobox (there are 3 of them). Also, the restoreState and saveState methods.

Stepping (with a lot of step into) from those points will hit virtually all the code in these
classes. You can also clear the breakpoints in the server side participant if you wish. That
code has not changed at all for this lab.

You can now close all your open editors and proceed to the next section to try out your
new aspect editor.

Launch the Server for Debug Using Jetty

Use the existing launch configuration from the prior labs.

From the Debug toolbar dropdown (i) in the toolbar, select [RTCExt] Build on
State Change - Jetty RTC Server.

As before, the Console view will show a few log messages indicating that the Jetty
server is up and running.

¥ Tasks | [£: Problems | % Pending Changes | 4" Search |gu JUnit| & Console
[RTCExt] Jetty RTC Server [OSGi” Launch] CARTC30Dewinstalls\TeamConce

2011-02-02 16:59:58.022::INFO: Logging to STDERR
2011-02-02 16:59:58.272::INFO: Jetty-6.1.x

2011-02-02 16:59:58.676::INFO: Started SocketCon
2011-02-02 16:59:59.285::INFO: Started SslSocke

Launch an RTC Client and Configure the Participant

Create a new launch configuration for the RTC Client plus your aspect editor.

From the Debug toolbar dropdown, select Debug Configurations...

Brlova~y swe~ &5~ i vmoe
» 1 [RTCExt] RTC Eclipse Client

2 [RTCExt] Build on State Change - Jetty RTC Server

3 [RTCExt] Jetty RTC Server

4 [RTCExt] Create RTC Test Database

5 [RTCExt] Debug Running Tomcat

]

™o e ¢ ¢

Debug As ’
Debug Configurations...

Organize Favorites...

Page 134

IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe Debug Configurations dialog, expand the Eclipse? Application tree and right
click the [RTCExt] RTC Eclipse Client configuration and then from the popup menu,
select Duplicate. Note that you are not changing the existing launch but creating a copy
of it. You should keep the original launch around unchanged to use as a known working
base from which to create other launch configurations.

I
iBX| BER -

type filter text

@ Eclipse Application
+ @ Edipse® Application
@ [RTCExt] RTC Eclipse Client

Bl Java | [T New
T Java | = Duplicate
Ju JUnitl ¥ Delete ‘é

Ji JUnit Plug-in Test
- & JUnit? Launch

c. Change the Name of the new configuration to [RTCExt] Build on State Change
- RTC Eclipse Client.

d. Add the common and ui bundles to the configuration. Click on the Bundle link and in the
Add Bundle dialog, type rtcext in the filter field, select the common plug-in and then
click OK. Repeat, but select the ui plug-in this time. Your launch configuration should
look like this.

|Name: [RTCExt] Build on State Change — RTC Eclipse Client|

% Bundles . [l Main| 2 Configuration| & Tracing ™ Environment ™ Common

Actions ¥ | & Filter|

Add a Feature or[Bundlelto this launch.

Import from or compare with bundles in another launch

¥ 1 Feature (202 including required/nested)

Fcom.ibm.team.rtc.client.feature
Add a Feature

~ 2 Bundles (446 including required) =

¥ netjazz.rtcext.workitem.extensions.common

¥ net jazz.rtcext.workitem.extensions.ide.ui

~ Program Arguments

v System Properties

= i
AITE d J -

|‘ Apply ” Revert

Lab 5 — Add an Aspect Editor Page 135

IBM Software

__e.

_ 7. Launch the RTC client.

a.

Click Apply to save your changes but do not close the dialog.

Click Debug at the bottom of the Debug Configurations dialog. If prompted do not clear

the runtime workspace. You will probably answer no for this question for the rest of this
workshop. You can turn off the prompt by editing the launch configuration.

b. The client will launch with the aspect editor included. It will connect automatically to the
Jetty server you just launched via the repository connection you created in lab 2. The
project area will still be connected and the participant is fully configured from lab 4.

The next time you want to debug this server configuration, you will be able to click a

shortcut to it on the dropdown of the Debug toolbar icon. You will not need to open the
Debug Configurations dialog.

__8. Try out the new aspect editor.

_a.

Open action in the menu.

In the Team Artifacts view, right click the Test Project 1 project area and then click the

+

+

+

+

+

+

EE Team artifacts 52

=+l

- | T o=
3 Fad LT

Lf Repository Connections

Tﬂ'heat Froject 1 [Iucalhustﬂ

[34 Favorites
= Feeds

[My Repos
& My Tearn
L% work Iter

Mewy
Show in Tearn Organization

Open

Cpen Web LI for Project

2 OEen My User Editor
".
e \-‘--n.-.‘l*"

& Team Central | " My Work | — O

All Project and Team Areas (2 of 2 areas selected)

i T —

Page 136

IBM Rational Team Concert 4.x Extensibility

IBM Software

b. In the project editor that opens, switch to the Process Configuration tab and then on

the left, expand the Team Configuration tree then select Operation Behavior. Then, on
the right, scroll down to the Work Items > Save Work Item (server) operation and
select the Everyone (default) column next to it as shown here.

& Test Project 1 3
@ Project Area ~

Test Project 1

Configuration T

i Roles
+-1) Project Configuration
=-[{%] Team Configuration
v Permissions
&* Operation Behavior |
T Event Handling {unconfigured)
oo Tteration Types
=% Timelines

<

¢
<4

4

Operation Behavior a

Select a cell in the table below to configure the preculf
corresponding operation and rale.

Preconditions are checked befare running an uperatiurg
operation's preconditions and follow-up actions canﬁb?
operation configurations completely replace each ot
choose the most appropriate operation configuration ﬁ
preconditions and follow-up actions defined in that c

D.,

Oper ations
+- Build
+- Dashboards
+-Planning
+ Process
+ Feports
=1- Source Control
Deliver (client) a4
Deliver (server)
Save Change Set Links ar
=1 Wk Tems
Save Wark Item (server) | 2y

Everyone .. F'ro

\\ Ay A4

The Save Work Itern operation is executed wheneve

1

Cwerview | Links |Prucess Configuration |Pr0cess Configuration Source | Access Contral | Work Item Calr__

__c. Scroll down to find the Follow-up actions section on the right and select the Build on

State Change entry.

i. If you setit, your breakpoint in the restoreState method will trigger. Step into and

through the two methods called from here.

__ii. Hit the debugger’s resume button and your breakpoint in createControl will
trigger. Step into and through the methods called from here.

__iii. After you hit resume from createControl or one of its called methods, the
breakpoints in the selection changes listeners will start to trigger because of the
initial setting of the combobox selected element during initialization.

__iv. Once you have hit resume after all the selection change listener breakpoints
(each may trigger twice), switch back to the launched RTC Eclipse client and see
the aspect editor in action.

Lab 5 — Add an Aspect Editor

Page 137

IBM Software

-9

The selected values in the comboxes should look familiar. In fact, even better since the
actual work item type and state names and not just the ids are shown. Note that the id is
all that is put into the process XML.

Name: Build on State chal| LIFail if not installed
Description:

When the specified work iterm type changes
to the specified state, the specified build will
be requested.

Work Item Trigger
Type Id: N Story {com. bm.t2am.aptw| v

State Id: Implemented (cam.ibm.tea| ¥

Build Definition

1d: " our., integration. build W

Select a different work item type and see how the list of states changes in the state id
combobox. If the type you chose has a state with the same name, Implemented, the
state setting will be recognized as valid even if the id is different. The state id in the
model will be updated if required. However, if you choose a work item type that does not
have an Implemented state, the state will be flagged as an error. Hover over the little red
error icon to see the error message. You may need to try a few times to find a case
where the state is still valid after changing the type (hint: Defect and Task both have an
“In Progress” state). Also note how the project area editor is marked dirty after your first
change and the Save button is enabled. Also note how annoying having all those
breakpoints set can be. ® You may want to disable some of them.

When done, click Save at the top right of the project editor and your breakpoint in the
saveState method will trigger. Step into and through the called methods if you wish and
then return to the launched RTC Eclipse client.

Leave the editor open at this point. You will soon come back here and make a change.

5.4 Trigger the Participant

9. Depending on how you left the follow-up action configured, you may need to alter these

instructions to match your work item type and state.

__10. Find the Story work item used in labs 2 through 4 and then move it out of the Implemented state
(via the Reopen action) or create a new story.

a.

Either of these will cause the breakpoint you set earlier to trigger (unless you cleared it).
The RTC Eclipse client in which you were studying the code will now surface (if asked
about switching to the debug perspective, click Yes). If it does not surface, you probably
minimized it earlier. In this case, it will be flashing in the Windows taskbar. Click it in the
taskbar to surface the debugger.

Page 138

IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Simply resume execution since this code has not changed (”E').

c. Switch back to the RTC Eclipse client where you created the work item. Your work item
will be successfully saved. If it shows a failure due to timeout, close the editor without
saving, recreate the Story (or reedit the existing Story) and when the breakpoint hits, just

use the resume button (”E').
__11. Move the Story to the Implemented state (or your different type to the trigger state).

__a. Atthe upper right portion of the work item editor, select Set Implemented or Complete
Development (depends on which workflow state the story is currently in) and then click
Save.

uff &3 = B
&8 & B | Save
uild stuff o lIn Progress v]

° S
-ﬁ\

<

4

P
™

b. Once again the breakpoint is hit (unless you cleared it) and your debugger surfaces. Go
ahead and resume again.

c. Switch back to the RTC Eclipse client where you created the work item. Your work item
will be successfully saved. If it shows a failure due to timeout, try saving again and when

the breakpoint hits, just use the resume button (”E').

Lab 5 — Add an Aspect Editor Page 139

IBM Software

If you go to the Team Advisor view and check to make sure the Show Failures Only
filter is off and Show Detail Tree is on (see highlight below), you can browse the results
of this successful operation. Also, if you double click our.integration.build in the Team
Artifacts view, the Builds view will show a new pending build request.

Bl wWork Ttems |7 Tag Cloud | [Problems |68 Team Advisor 52 . @ Builds =0

&4 Required Properties
=g Build on State Changs
V¥ Build request successful |

Time ...
= d}"} Save Work Item [server] 2:50:18 0.05 s

&o- G-] =% T
Info

A e build requiest for build definition

0.00s ‘our.integration.build' was submitted,
24.94 5

Reason
when the specified work itemn type changes to the

@3'“} Request Build [server] 3:50 0.41 s specified state, the specified buld will be requested,

8=l wihy did this happen?

5.5 Add another Instance of the Follow-up Action and Try Again

__12. Return to the Test Project 1 project area editor and add another instance.

a.

The editor should still be open to where you were before. Next to the Follow-up actions
list, click Add... and in the Add Follow-up Actions dialog, select Build on State
Change from the list and click OK. Only the restoreState and createControl breakpoints
will trigger this time. The process configuration editor will now look like this. Note the
errors. None of these can be empty.

Preconditions and follow-up actions are configured for this operation

[Final {ignore customization of this operation in child areas)

Preconditions (16 available):

W EY T=lB uild on State Change [C] Fail if net installed

Required Attributes For Type and State

Follow-up actions (1 available):

Add... | Description:
Remove When the specified work item type changes to the -
specified state, the specified build will be requested.
Up
Up

Down

9 Work Item Trigger
TypeId: 01 'I

Build on State Change
Build on 5tate Change

dll

State Id: 0[- l

Add...
Build Definition

1d: | -

Down

Page 140

IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Select a work item and state that are different from the ones configured for the first
instance. Select the one and only build definition. If you wish, you can create a new build
definition. If you do create a new build definition, you will not see it until a new instance
of the aspect editor is created. A new instance is created each time you select a
participant in the Follow-up actions list.

__13. Now create a new work item of the type you selected and move to the selected state. Once you
do, a build will be submitted. It will still work for the original settings too.

__14. Close down the launched client and server.

a. Close the RTC Eclipse client where you were working with the work items and project
area.

b. Back in the original RTC Eclipse client, go to the Console view and click the Terminate
icon.

¥ Tasks | B console 52 | g unit J'Search R I GH & e B-ri- 70

Build on State Change - Jetty Jazz Server [0SGi2 Launch] O ARTC20020ev jazzhclientheclipse jdkibint java
at org.morthay.http.Hotplonnection.handle (HetpConnection. java: 53 7|»~
at org.morthav.http.ocketlistener . handleConnection(locketListene
at org.morthay.util.Threaded3erwver.handle (ThreadedServer. java: 357
at org.morthay.util. ThreadPooliFPoolThread.run(ThreadPool . java: 534

R

£ ¥

You have completed lab 5. You can now configure your follow-up actions
using a nice aspect editor. What could the scrum masters possibly ask for
next?

Lab 5 — Add an Aspect Editor Page 141

IBM Software

Lab 6 Deploying the Server Side

Lab Scenario

Now the code is really complete. Only the deployment to the production environment is left to
do. This lab will concentrate on the server side deployment.

Client side deployment of the common and ui plug-ins is rather simple and well documented
elsewhere. Since only people that will modify the process configuration need the client side
plug-ins, they could simply place them in there dropins folder
(C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse\dropins in this lab
setup). Alternatively, a client side feature and update site could be created as described at
http://wiki.eclipse.org/FAQ_How_do_|_create_an_update_site %28site.xmI%29%3F.

Actually, the server side deploy contains all those same steps plus a couple more. So, you can
also use this lab as a guide for a client side update site too. Up to the server side specific steps
and except for which plug-ins to include:

32 common and ui on the client

% common and service on the server

If your RTC server is not running, start it now
(C:\RTC40Dev\installs\JazzTeamServer\server\server.startup.bat).

6.1 Creating a Server Side Feature

__15. If your RTC development environment is not open, navigate to
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse in the Windows explorer
and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one
you used in lab two. If the Plug-in Development perspective is not open, open it now by
selecting Window > Open Perspective > Other... > Plug-in Development from the menu bar.

Page 142 IBM Rational Team Concert 4.x Extensibility

http://wiki.eclipse.org/FAQ_How_do_I_create_an_update_site_(site.xml)%3F

IBM Software

__16. Create the server side feature.

__a. From the menu bar, select File > New > Project... then in the New Project wizard, type
feature in the filter field, select Feature Project from the list and then click Next.

ru? New Project @

Select a wizard p—

Create a Feature project

Wizards:

:

=l [= Plug-in Developrment
i{§ Feature Patch
[Feature Project

Lab 6 — Deploying the Server Side Page 143

IBM Software

b. On the second page of the wizard type
net.jazz.rtcext.workitem.extensions.server.feature into the Project

name field. As you type, the Feature ID is set to a reasonable value but the Feature
Name should be reset to: Work Item Extensions Server Feature. You can set

the Feature Provider to yourself or your company, if you wish. It is not required. Click
Next.

e ™
e . =

Feature Properties it :
Define properties that will be placed in the featurexml file ’

Project name: net.jazz.rtcext.workitem. extensions.server.feature

Uze default location

Location: | CARTC301 Devtworkspaces\Devl\WS\net.jazz. ricext Browse...

Feature properties

Feature ID: net.jazz.rtcext.workitem, extensions.server.feature
Feature Mame: Work Item Extensions Server Feature
Feature Version: 1.0.0.qualifier

Feature Provider:

Install Handler Library:

® [< Back Mext =] [CINEEN] [Cancel

__c¢. On the final page of the wizard select the common and service plug-ins and then click
Finish.

Page 144 IBM Rational Team Concert 4.x Extensibility

IBM Software

’ <) New Feature | = | =) E

Referenced Plug-ins and Fragments ___,-;] J 2 |

Select the plug-ins and fragments from your workspace to package into the i
new feature.

1% net jazz.ajax.tests jfs.feature.source (2.0.0v20101110_2242) - Select All

[¢ net jazz.rtcext. workitem.extensions.common {1_U_ﬂ.qua|ifier]|

Deselect All |

¥=net.jazz.rtcext.workitem.extensions.ide.ui (1.0.0.qualifier)

m

[V 4 net jazz.rtcext. workitem.extensions.service (1.0.0.qualifier)
¥-netjazzweb.app (2.1.0.,20101110_2242)

I%=netiarz.web.client (1.1.0v20101110 2242
4 11 3

2 of 1109 selected.

_l . Y z = S - [
@ < Back Next > ' Finish ' Cancel

d. Your new feature project appears in the Package Explorer view and an editor opens on
the feature.xml file. On the Overview tab, make sure the Version is set to
1.0.0.qualifier. This is the same Eclipse best practice you used for the plug-ins.

General Information
This section describes general information about this feature,

I niet. jazz ricext.workitem.extens inna.aerver.Feah_Jre|
Warsion: 1.0.0.qualifier

Marne: Wiark Item Extensions Server Feature

Provider:

Branding Plug-in:

Update Site URL:

Update Site Mame:

Lab 6 — Deploying the Server Side Page 145

IBM Software

__e. Stillin the editor, switch to the Information tab, select the Feature Description sub-tab
and enter a Text description as shown here. If you wish you can look at other information
that can be added, such as a copyright and license information.

L *rnet jazz.rtcext workitem.extensions. server . feature B2 = O

& Information G 3

Enter description, license and copyright information. Optionally, provide links to update
sites for installing additional features,

E Feature Description = Copyright Notice E License Agreement| &= Sites o Visit

Optional URL: | hfp: Advewew exarmple,comfdescription

Text: Includes these extensions: - Build on 3tate Change
[follow-up action for the work item =ave operation)

Crverview Plug-ins | Included Features | Dependencies | Installation |Build |

__f. Switch to the Dependencies tab and click Compute.

G *net, jazz. ricext workitern.extensions.server. feature &2 = 0O

% Dependencies

Required Features,/Plug-ins 1A Dependency Propertie
Compute plug-ins that will need to be Define the properties of
present before installing this feature, dependency,

Clrecompute when feature plug-ins change Wersion to match:

Add Plug-in... Match Rule:

[Compute]

Total: 0O

L >
Owverview | Information |Plug-ins | Included Features | Dependencies |7

Page 146 IBM Rational Team Concert 4.x Extensibility

IBM Software

__g. The dependencies list is computed as shown here. The dependencies are expressed in
terms of plug-ins; however, for Jazz server side provisioning, you need to use features.
Using the compute button was helpful because having the list of plug-ins makes it
straight forward to figure out the list of features you really want. You will need four server
side features in the dependency list: one each for repository, process, workitem and
build. The server side features on which you will generally depend (the ones that provide
services that you will use from these and other plug-ins) follow two consistent naming
patterns: com.ibm.team.component.server.jfs.feature and
com.ibm.team.component.server.rtc.feature Click Add Feature...

[Irecompute when feature plug-ins change

<p-comn.ibr.tearn.build.cormman | Add Plug-in...
“pecom

Jbrnteam. build, service
ﬂl;cum. ibm.team. process.cammon Add Feature,..
ﬂl;cum. ibm.team. process. service
%cum.ibm.team.repnsib:ury.cummun
p=corm, ibrm.tearm.repository. service
“p=rorm. b, team. workitem.comman
“p=rom.bm.team.workitem.service
%net. jazz ricext.workiterm.extensions.commaon
“p+org.eclipse.core.runtime Total 10

h. In the Feature Selection dialog type com.ibm.team.*.server.jfs.feature into
the filter field, select the two features shown here
(com.ibm.team.process.server.jfs.feature and
com.ibm.team.repository.server.jfs.feature) and then click OK.

I Feature Selection TR - _=SECT \é

Select a feature:

| com.ibm.team.* server jfs.feature

| | % com.ibm.team.jfs.server.jfs.feature.source (1.0.100.v20101110 2242) =+

% com.ibm.team.process.server.jfs.feature (1.1.0.v20101110_2242)

¥ com.ibm.team.process.server.jfs.feature.source (1.1.0.v20101110_224;

W com.ibm.team.reports.server jfs.feature (1.0.0.v20101110_2242)

% com.ibm.team.reports.server jfs.feature.source (1.0.0.v20101110 2242 —
% com.ibm.team.repository.server.jfs.feature (1.0.100.v20101111_0151)

% com.ibm.team.repository.server.jfs.feature.source (1.0.100.v20101111 ~
4 1l »

OK Cancel

Lab 6 — Deploying the Server Side Page 147

IBM Software

ke

Click Add Feature... again, but this time in the Feature Selection dialog type
com.ibm.team.*.server.rtc. feature into the filter field, select these two features

(com.ibm.team.build.server.rtc.feature and

com.ibm.team.workitem.server.rtc.feature) and then click OK.

The dependency list will now contain the four features (red arrows) in addition to plug-ins
it had before (selected). Select all the plug-ins as shown here, right click one of them and

then select Delete from the menu.

|| Recompute when feature plug-ins change

“=com.ibm.team.build.common

¥ com.ibm.team.build.server.rtc.feature
“=com.ibm.team.build.service
“=com.ibm.team.process.common

¥ com.ibm.team.process.server.jfs.feature
“=com.ibm.team.process.service
“=com.ibm.team.repository.common

4 com.ibm.team.repository.server jfs.feature
“=com.ibm.team.repository.service
“*com.ibm.team.workitem.common

¥ com.ibm.team.workitem.server.rtc.feature

“-com.ibm.team.workitem.service!

Add Blug-in...

Add Feature...

Compute

VA

“-netjazzrtcexty Delete

- org.eclipse.cor ¢ Cut

Ctrl+X

The list will now look like this. Type Ctrl+S to save the feature.xml file. You can now

close the editor.

|| Recompute when feature plug-ins change

% com.ibm.team.build.server.rtc.feature
¥ com.ibm.team.process.server.jfs.feature

% com.ibm.team.repository.server jfs.feature

“*icom.ibm.team.workite m.sewer.rtc.featureé

Add Plug-in...

Add Feature...

Compute

Total: 4

Page 148

IBM Rational Team Concert 4.x Extensibility

6.2

A7

Create the Server Update Site

Create the update site.

_a

_b.

IBM Software

From the menu bar, select File > New > Project... then in the New Project wizard, type
site in the filter field, select Update Site Project from the list and then click Next.

F-J New Project @

Select a wizard —

Create an Update Site project

Wizards:
site i)

= = Plug-in Development
| Update Site Project

7 [Mesxt = l

On the second page of the wizard type

net.jazz.rtcext.workitem.extensions.server.updatesite into the Project

name field. Click Finish.

' New Update Site =] % |

Update Site Project
Create a new update site project \i

|Pruject name: net.jazz.rtcext.workitem.exhansiDns.server.updatesite| |

Use default location

Web Resources
[Generate a web page listing all available features within the sita

@ Finish H Cancel

Lab 6 — Deploying the Server Side

Page 149

IBM Software

__¢. Your new update site project appears in the Package Explorer view and an editor opens
on the site.xml file. In the editor, remain on Site Map tab and click Add Feature.

3 sitesml 22 =8

& Update Site Map @

Kanaging the Site

1, Add the features to be published
on the site,

2. For easier browsing of the sits,
categarize the features by dragging.
3. Build the features.

Mew Category
Add Feature...

Site Map| Archives | site.xml

__d. Inthe Feature Selection dialog, type *rtcext into the filter, select the feature you

created in the last section and then click OK. Back on the site.xml editor type Ctrl+S to
save the file.

.’ Feature Selection @

Select a feature:

| " et jazz.ricext.warkitem.extensions. server. feature (1.D.D.qua|iﬂer}|

(7 ()4 l [Cancel]

Page 150 IBM Rational Team Concert 4.x Extensibility

IBM Software

__18. Share the new projects to your repository workspace.

__a. Inthe Package Explorer view, select the feature and update site projects as shown
here. Then, right click one of them and from the menu, select Team > Share Project...

& Packa 2 . % Plug-i|fa My W |Ei Team | % Team | © B

- & com.ibm.team.common.tests.utils
- 2 com.ibm.team.jazz.foundation.server.licenses.enterpr
- 2 com.ibm.team.licensing.product.rtc-standalone

© &5 net.jazz.rtcext.workitem.extensions.common (RTC Ext

+ i netjazz.rtcext.workitem.extensions.ide.ui (RTC Extens

- 2 net.jazz.rtcext.workitem.extensions.server.feature

-2 netjazz.rtcext.workitem.extensions.server.updatesite

© i net.jazz.rtcext.workitem.extensions.service (RTC Exten
rksh

__b. Inthe Share Project wizard, select Jazz Source Control then click Next.

" Share Project . @Eﬂ

Share Project

Select the repository plug-in that will be used to share the | {——»

selected project, o

i

Select a repository type:

=
%Jazz Source Control |

e]

Lab 6 — Deploying the Server Side Page 151

IBM Software

c. On the second page of the wizard, select the RTC Extension Workspace (as
highlighted with a red box) and click New Component. In the New Component dialog,
enter RTC Extension Deploy as the component name and click OK. Finally, back to
the wizard, make sure the new component is selected (red arrow) and then click Next.

. Share Project in Jazz = |-=- [
Select Component 2
=3

Select the repository workspace and component in which to share the
project.

Repository: |ADMIN@localhost " Login

@ Select a component in an existing repository workspace:

| + ¥ RTC Extension Workspace (loaded) | New Component...
=4 RTC Extension Deploy (to add) :
<. RTC Extension Lab Code V\
<. RTC Extension Lab Code License
<. RTC Extension Workshop Configuration

Mew Folder...

Create a new repository workspace named:

@ < Back Next > | [Finish] | Cancel

Page 152 IBM Rational Team Concert 4.x Extensibility

IBM Software

d. On the third page of the wizard, confirm that the feature and update site projects are
selected and then click Finish.

) Share Project in Jazz == O '

Projects

-

Cmd
Select projects to share in Jazz.
Available unshared projects:

= com.ibm.team.common.tests.utils | Select All

& com.ibm.team.rtc.client.feature

& External Plug-in Libraries [Deselect Al

¥ & net.jazz.rtcext.workitem.extensions.server.feature

¥ & net jazz.rtcext.workitem.extensions.server.updatesite

2 of 5 selected

@ < Back Mext > Finish ‘ | Cancel

e. The Pending Changes view will show your outgoing component addition with its newly
shared projects. You will deliver them later.

[Problerms | 48 Team advisor | El Console | /4 Pending Changes 52 = O
1 outgoing change set, 1 component change =
FrlA-L G EME &

= [@ RTC Extension Warkspace <-> RTC Extension Stream
= g RTC Extension Deplay
= [® Outgoing
= ¢\ Share projects

= /
= netjazz.ricext. workitemn.extensions. server.feature
= retjazz.ricext workitern.extensions. server .updatesite

&5 RTC Extension Lab Code

Lab 6 — Deploying the Server Side Page 153

IBM Software

__19. Build the update site.

__a. Return to the site.xml editor and click Build All.

Managing the Site

1, add the features 1o be published on the site,
2. For easier browsing of the site, categarize the features by dragging.
3. Build the features.

§* net jaez. ricext workitem.extensions. server. feature 1 | New Category

Add Feature...
Synchronize...

Build

il

Build All

.

T, ﬁwm‘-ﬂ#w“ “r‘"'-.,.,“\“-‘_ﬂ

Page 154 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. The Package Explorer and Pending Changes views will show several new files in your
update site project. In the Pending Changes view they will show up as Unresolved.
Select the four entries in the root of the update site as shown here (note that site.xml is
not selected). Then, right click one of them and from the menu select Ignore. When
prompted to confirm, click Yes. A dialog that explains how to un-ignore the resources
later may appear. Click OK if it shows up. These files are created by the update site build
and do not need to be stored under source control. This action along with the next sub-
step will make sure you do not accidentally check them at another time.

¥ Tasks |2 Problems | A Pending Ignore
12 unresolved local, 1 outgoing ¢ Undo
4 [RTC Extension Workspace Check-in
4 i RTC Extension Deploy Lock

4 = Unresolved Unlock

4 = netjazz.rtcextw
By
53

Compare With
Expand Children

Ignore Changes During D
Recognize Changes During

B+

B2

e sitexml

Note that the artifacts.xml and content.xml files are used for the new P2 style update
sites. The jazz server side provisioning does not use them at this time. However, if you
create an update site for the client side plug-ins, you can create a P2 enabled update
site. Also, you do not want to check-in the change to the site.xml file but you do not want
to ignore the file either. The version that was shared before and is already in the
repository workspace is the one you want. The site.xml file is both a build input and

output when an update site is built. You want to build input version under source control,
not the build output version.

Lab 6 — Deploying the Server Side Page 155

IBM Software

c. The Pending Changes view will now show a new .jazzignore file as Unresolved. Go
ahead and check it in now by right clicking the file and then selecting Check-in > Share
projects from the menu (“Share projects” is the name of the change set created when
you shared the two projects into the RTC Extension Deploy component). Note that
site.xml is not selected.

¥ Tasks |2 Problems A Pending Changes &3 . + Search| & Console & Team Advisor — O
6 unresolved local, 1 outgoing change set, 1 compor " ¥ | A ¥ & U 5 &l | & -«
4 [3 RTC Extension Workspace <-> RIC |
4 g RTC Extension Deploy
4 = Unresolved
4 = netjazz.rtcext.workitern.extensions.server.updatesite
~ jazzignore

[@ site.xml
4 Iir 4

d. If you now dig into the site.xml file and into the jars in the features and plugins folders
inside the update site project, you will notice that all the update site build has converted
all the “qualifier” segments of the version numbers to date and time stamps. This will
make it easier to update your code in a test system during development. One final note.
Generally, if you need to build the update site again, you will first want to delete the jars
from the update site project’s features and plugins folders. The build will generate new
jars with different date and time stamps and leave the old ones there too.

6.3 Deploy the Server Side Feature
__20. Shutdown the RTC server and copy the update site into place.
__a. Inthe Windows Explorer, navigate to

C:\RTC40Dev\installs\JazzTeamServer\server and run the
server.shutdown.bat file.

Page 156 IBM Rational Team Concert 4.x Extensibility

IBM Software

b. Inthe Windows Explorer, navigate to
C:\RTC40Dev\installs\JazzTeamServer\server\conf\ccm\sites and create
a new folder to contain the extension. For this lab, call it buildOnState-update-site
as shown here. Be sure you are in the ccm application configuration and not the jts
application configuration.

4 RTC30Dev
4 | installs
4 | JazzlTeamServer

> | datawarehouse

> | internal
| license
> | properties
> | repotools
4 | server
4 | conf
4 | ccm
> | derby
> | indices

. provision_profiles
4 | sites

> | buildOnState-update-site

> | enterprise-update-site
> | rtc-commons-update-site

> | update-site

Lab 6 — Deploying the Server Side Page 157

IBM Software

c. Inthe Package Explorer view, select the site.xml file and the features and plugins
folders as shown here. Then right click one of them and select Copy from the menu.

[% Package &, % Plug-ins| fia My Work| & Team Ar| ¥ Team D |~ 0

© & com.ibm.team.common.tests.utils

- & com.ibm.team.jazz.foundation.server.licenses.enterprise-ea

* & com.ibm.team.licensing.product.rtc-standalone

- & com.ibm.team.rtc.client.feature

© &5 net jazz.rtcext.workitem.extensions.common (RTC Extension Wor
- w1 netjazz.rtcext.workitem.extensions.ide.ui (RTC Extension Worksp
- & net.jazz.rtcext.workitem.extensions.server.feature (RTC Extension

4 ¢ net.jazz.rtcext.workitem.extensions.server.updatesite (RTC Extens

&y features New 3
- & plugins
& aatfacts Open in New Window
=Ap— Show In Alt+Shift+W »
% sitexml|:=_Copy Ctrl+C
13 netjazzrtd = Copy Qualified Name
- = Paste Ctrl+V

d. Back in the Windows Explorer, select the buildOnState-update-site folder and
paste the extension update site into it. Here is the result.

Y
4 | ccm Name

> | derby
o | features

> | indices
o] ! plugins

| provision_profiles

£ sitexml

4 | sites

> | buildOnState-update-site

> | enterprise-update-site

Page 158 IBM Rational Team Concert 4.x Extensibility

IBM Software

__21. Create the provisioning ini file.

a. Inthe Windows Explorer, navigate to
C:\RTC40Dev\installs\JazzTeamServer\server\conf\ccm\provision profiles
and create a new file in that folder named buildOnState.ini.

b. Open the new ini file with Notepad and enter these two lines:

url=file:ccm/sites/buildOnState-update-site
featureid=net.diazz.rtcext.workitem.extensions.server.feature

c. Save the file and close the editor. When you restart the RTC server, it will read this new
provisioning ini file and find the path to the update site and the id of the new feature to
load.

__22. Startthe RTC server.

a. Inthe Windows Explorer, navigate to
C:\RTC40Dev\installs\JazzTeamServer\server and run the server.startup.bat

file.

b. If you open your browser to this URL
https://localhost:9443/ccm/admin#action=com.ibm.team.repository.admin.componentStat
us, login as myadmin / myadmin. Use the browser text search to search for rtcext or
go to the end of the page. You will see the net.jazz.rtcext.workitem.extensions
component is running. It does not show any services since it just contains the operation
participant.

com.ibm.teamz.supa.search
Senvices:

& com.ibm.teamz supa.servercommaonyvl ISUPASenice

netjazrz.ricext.workitem.extensions

Mo Senvices

Lab 6 — Deploying the Server Side Page 159

https://localhost:9443/ccm/admin#action=com.ibm.team.repository.admin.componentStatus
https://localhost:9443/ccm/admin#action=com.ibm.team.repository.admin.componentStatus
file:///ccm/sites/buildOnState-update-site

IBM Software

6.4 Deploy the Client Plug-ins
__23. Export deployable plug-ins to the drop-ins folder.

__a. Inthe Package Explorer view, select the common and ui plug-ins as shown here and
then right click one of them and select Export...

% Packa 2 % Plug-i '_I_Fm My W E Team_'_ * Team | © E'_'_

¥
o |

- & com.ibm.team.common.tests.utils
- & com.ibm.team.jazz.foundation.server.licenses.enterprisi
- & com.ibm.team.licensing.product.rtc-standalone
- & com.ibm.team.rtc.client.feature

| &8 netjazz.rtcext.workitem.extensions.common (RTC Exter

& n New 4

@ n Openin New Window
N0 ShowlIn Alt+Shift+W»
& R @& Copy Ctrl+C
g Copy Qualified Name
% Paste Ctrl+V
#K Delete Delete
Build Path b
Source Alt+Shift+S»
Refactor Alt+Shift+T»
23 Import...
i3 Export...

Refresh

Page 160 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. Inthe Export wizard, type fragments in the filter, select Deployable plug-ins and
fragments from the list and then click Next.

b Export . @ﬁw

Select A

/
Export the selected plug-ins andfor fragments in a form l g 5 l
suitable for deploying in an Eclipse product.

Select an export destination:

fragments i®

= = Plug-in Development
If:%i Deployable plug-ins and fragments

.

Lab 6 — Deploying the Server Side Page 161

IBM Software

c. On the second page of the wizard, make sure the common and ui plug-ins are selected
and specify the RTC Eclipse client’s dropins folder as the destination as shown here. You
may want to use the Browse... button. Do NOT hit Finish yet, but rather select the
Options tab toward the bottom and proceed to the next step.

l,) Export — -

Deployable plug-ins and fragments

Export the selected projects into a form suitable for deploying in an Eclipse
product

Available Plug-ins and Fragments:
[] == com.ibm.team.common.tests.utils (1.0.100.v20120518_2049) Select All
== net jazz.ricext. workitern.extensions.common (1.0.0.qualifier)

=J= net.jazz.tcext.workitem. extensions.ide.ui (1.0.0.qualifier)
[=I= net jazz. ricext. workitermn. extensions.service (1.0.0.qualifier) Working Set... .

Deselect All [}

2 of 4 selected.

Destination | Gptionsl JAR Signing

@ Directory:

CARTC40Devinstalls\ Team Concert'jazz\client\eclipse\dropins -

7 Archive file;

d. On the Options tab, make sure the checkboxes are selected as shown here. Leave the
default value for the qualifier alone (the wizard will fill in the appropriate value when you

check the box). Now click Finish.

Destination| Options| JAR Signing

[] Export source: |Generate source bundles v

Package plug-ins as individual JAR archives
Qualifier replacement (default value is today's date): 201102091632

[Save as Ant script: hd Browse...

[] Allow for binary cycles in target platform
[Use class files compiled in the workspace

__ 24, Restart the RTC Eclipse client.

__a. Close your RTC Eclipse client.

Page 162 IBM Rational Team Concert 4.x Extensibility

IBM Software

__b. In Windows Explorer, navigate to
C:\RTC40Dev\installs\TeamConcert\jazz\client\eclipse and double click
eclipse.exe.

6.5 Test the Deployed Participant

__25. Create a dummy build definition. You just need a simple build definition to test the participant.
The build does not need to run properly. The participant just needs to make requests for it.

__a. Inthe Team Artifacts view, expand the RTC Extension Workshop node, right click
Builds and then click New Build Definition...

[# Packa |% Plug-i |faMy Wo EiTeam & - % Team | = O
All Project and Team Areas (1 of 1 areas selected)
Exv|&l @

- o Repository Connections

< @ RTC Extension Workshop [localhost]

- |G5 Builds
- 8 Enterp New Build Definition...
- [Plans Show Build Results

- [, Repor| Search for Tagged Builds...

Sourcé o

Lab 6 — Deploying the Server Side Page 163

IBM Software

In the New Build Definition wizard, make sure Create a new build is selected and then

__b.
click Next. On the second page of the wizard, change the ID to
our.integration.build, make sure Ant - Jazz Build Engine is selected and then

click Finish.
ESET—==)

. New Build Definition

I
General Information
Choose an ID, description, and build template for the new definition.

ID: our.integration.build
Description:
Available build templates:
Ant - Jazz Build Engine -
Ant with Enterprise Extensions - Rational Build Agent =l
| Command Line - Jazz Build Enaine i
Description:
A build using Ant and the Jazz Build Engine.
@ < Back Next > l Finish] l Cancel
I
) - — -~ — ——

IBM Rational Team Concert 4.x Extensibility

Page 164

IBM Software

c. Inthe build definition editor that opens, switch to the Ant tab, and enter a path for the
Build file and then click Save. You may now close the editor. Note that the build file does
not exist and any path will work for the current purpose. If you wish, you can use the path
shown, . /buildLocation/build.xml. Also note that a default build engine is
created at this time and is associated with your new build definition. This actually is
important. If there was no build engine for your build definition, the participant’s request
for a build would fail.

O *aur, integration.build 2 = O
g Build Definition = Save
ID: | our.integration.build Froject or Tearmn Area: | Test Project 1

]
Build File and Targets '
Specify the Ant build file and the targets to be invoked. Properties can be
referenced using ${propertyMamel.

Build file:* JbuildLocation build. x|

This can be an absolute path on the build machine, or may be
relative to the current directory of the build engine process,

Build targets:

The targets in the build file to execute. Multiple targets must be
separated by a comma. If none are specified, the build file's default
target is executed.

» Ant Confimnratinn

'{ 111 ' }I

Cwerview | Schedule |Properties | Ant

Lab 6 — Deploying the Server Side Page 165

IBM Software

__26. Add the follow-up action to the project area.

__a. Inthe Team Artifacts view, right click the RTC Extension Workshop project area and
select Open from the menu.

[Packa % Plug-i| % My W [HiTeam &, % Team | = O
All Project and Team Areas (1 of 1 areas selected)

Bl v

+ Lo Repository Connections

< @ RTC Extension Workshop [localhost]

e
)

i New 4
v 4 Show in Team Organization
» Open
+ Open Web Client for Project
LI

__b. Inthe project area editor, switch to the Process Configuration tab and then on the left,
expand the Team Configuration tree then select Operation Behavior. Then, on the
right, scroll down to the Work Items > Save Work Item (server) operation and select
the Everyone (default) column next to it as shown here.

55 RTC Extension Workshop (-
m Project Area -

RTC Extension Workshop Show in Team Organization Open We

Configuration Operation Behavior

1 Roles Select a cell in the table below to configure the preconditions and
© Project Configuration cperation and role.
¥ Team Configuration

Preconditions are checked before running an operation; follow-up
preconditions and follow-up actions can be configured different|
configurations completely replace each other; they are not additiv
rnost appropriate operation configuration for the logged-in user a

! Tteration Types follow-up actions defined in that configuration.
& Timelines

'+ Permissions

Artpy,

L VI Sl VR

& Operation Beha\rinr]

W Ewvent | NG

Operations Everyon... Pr
Build
Dashboards
Planning
Process
Reports
Source Control

4 Work Items

Save Work Item (server) m

4 m
Owverview Links Process Configuration Process Configuration Source| Access Control Waork Ttem Categories Releasrﬁg

AANA

Page 166 IBM Rational Team Concert 4.x Extensibility

IBM Software

c. Scroll down to find the Follow-up actions section on the right. Initially, the list will be
empty. Click Add... then on the Add Follow-up Actions dialog, select Build on State
Change (your new participant!) and click OK. Build on State Change will now be in the
list and when it is selected, the window will look like the following image. The aspect
editor is shown but needs to be filled out.

[“]Preconditions and fallow-up actions are configured for this operation
CIFinal {ignore customization of this aperation in child team areas)
Preconditions (6 awvailable): Name: Build on State ch: LIFail if not installed

add. .. Required Properties Description:
YWhen the specified waork item type changes

to the specified state, the specified build will
be requested.

work Item Trigger

Follow-up actions (1 available): Type Id: : M
Add. .. |E-ui|d on State Changel State Id: 9 w

Build Definition
Id: 9 w

__d. Fillin the Work Item Trigger as shown here. You may, of course, choose different values
for the work item type and state, but then you will need to adjust the following steps
accordingly.

work Item Trigger
Type Id: * Story (com.ibm.team.aptu
State Id: Implemented {com.ibm.tea)

Build Definition

1d: " our, integration. build b

__e. Click Save at the top right of the editor. You may now close the project area editor and
any other editors that may still be open.

Lab 6 — Deploying the Server Side Page 167

IBM Software

__27. Create a Story and move it to the target state.

a.

Click the dropdown menu arrow next to the New Work Item toolbar icon and then click
Story.

e @ i@
[i#| Diefect
[5 Task

Story

@ Epic

In the new work item editor that opens, set the two required fields and shown here and
then click Save in the upper right corner.

_
*10:34: 163 <untitled> &3

Story <10:34:16> ~ (
Surnmary:® A5 a user, Twant to build st -"
- Details Descri *
Type: Story v

Filed Against:™ Extension and Integration 4| v | L=

Story Points 0 pts w

Progresg, [No Wark |
v)‘d' ey N ———_ .

At the upper right portion of the work item editor, select Set Implemented and then click
Save.

N =g
-;;'_:J & w EE P

..:1’ = | Mew v
K“; MeEw

i’ ~ DesqStart Warking
"x w Set Implemented

% Set Done
aration t s | L2 Defer

! Feject

i w

g lamsanitins P g g

Page 168

IBM Rational Team Concert 4.x Extensibility

IBM Software

__d. At this point, the participant has run twice (once on each save). The first one did not
cause a build to be submitted, but the second did. In the Team Artifacts view, expand

the Builds node as shown here and double click the our.integration.build build
definition.

[# Pack |% Plug- | My W |Ei Team 2 . % Team
All Project and Team Areas (1 of |

% vy | E|®

Team Artifacts

- Lo Repository Connections
4 @ RTC Extension Workshop [localhost]
4 L5 Builds

- 1 Build Engines

o our.integration.build

- 18 Enterprise Extensions

__e. The Builds view opens showing your submitted build.

M Pending Changes | 20 Problerms | 88 Tearm advisor | B Console | &2 Builds 23 = O
our. integration. build - Found 1 Build {203 ms)

B oS = 2
Build Label Progress Estimated Completion | Start Tirr

=== oy, integration. build Pending
& 3

6.6 Complete Development

__28. Deliver the new deploy component.

__a. Ifyou wish, go to the Pending Changes view and now that you have tested the feature

and update site, check-in any adjustments you have made since sharing and then deliver
the added component and its content to the stream.

Lab 6 — Deploying the Server Side Page 169

IBM Software

_29. Thereset URL.

a. Note that if you update a feature that has already been provisioned into a Jazz server
and the server does not pickup the update but seems to still be running the prior version,
there is a URL that can be used to force reprovisioning. For the ccm application you have
been using in this lab, the URL would be this (https://localhost:9443/ccm/admin?
internal#action=com.ibm.team.repository.admin.serverReset). A page will appear with a
Request Server Reset button. Click that button and the next time the server is restarted,
all the plug-ins will be reprovisioned.

You have completed lab 6 and the whole workshop. You have a complete
work item save participant implementation and it is deployed into a real
environment.

So what to do next? The next thing you would probably want to do is use
this new found skill to solve a real issue at work. However, you may feel
that you need more information. Perhaps you do not feel comfortable
enough yet with the Eclipse plug-in model and are not sure you could
create them from scratch yourself, or perhaps you want to extend RTC in
a different way.

For the first issue, the place to start is with one of the many Eclipse plug-
in development tutorials that can be found on the internet. One such
tutorial is at http://www.ibm.com/developerworks/library/os-eclipse-
plugindev1/. Others can be found via an internet search on (without the
quotes) “eclipse plugin development tutorial”.

For the second issue, you now have an RTC extensions development en-
vironment that can support many of the scenarios described in the RTC
SDK at jazz.net (http://jazz.net/wiki/bin/view/Main/RtcSdk20). Getting this
set up properly is often the toughest part. So, look through the RTC SDK
scenarios and you will probably find the starting point and an example for
what you need to do. If not, use the Extending Team Concert forum
(http://jazz.net/forums/viewforum.php?f=2) at jazz.net to ask questions
about where to start for your specific problem. Be sure to be as specific as
possible and do not assume that those that answer have also been
through this workshop.

Page 170 IBM Rational Team Concert 4.x Extensibility

http://jazz.net/forums/viewforum.php?f=2
http://jazz.net/wiki/bin/view/Main/RtcSdk20
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/
https://localhost:9443/ccm/admin?internal#action=com.ibm.team.repository.admin.serverReset
https://localhost:9443/ccm/admin?internal#action=com.ibm.team.repository.admin.serverReset

IBM Software

Appendix A Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Appendix Page 171

IBM Software

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Page 172 IBM Rational Team Concert 4.x Extensibility

IBM Software

Appendix B Trademarks and copyrights

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM IBM Logo Rational Jazz

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Apache, Apache Tomcat and Tomcat are trademarks of The Apache Software Foundation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. See Java Guidelines

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product and service names may be trademarks or service marks of others.

Appendix Page 173

NOTES

NOTES

software

@

© Copyright IBM Corporation 2010, 2011

The information contained in these materials is provided for
informational purposes only, and is provided AS IS without warranty
of any kind, express or implied. IBM shall not be responsible for any
damages arising out of the use of, or otherwise related to, these
materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations
from IBM or its suppliers or licensors, or altering the terms and
conditions of the applicable license agreement governing the use of
IBM software. References in these materials to IBM products,
programs, or services do not imply that they will be available in all
countries in which IBM operates. This information is based on
current IBM product plans and strategy, which are subject to change
by IBM without notice. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole
discretion based on market opportunities or other factors, and are not
intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks or registered
trademarks of International Business Machines Corporation in the
United States, other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence in this
information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at
the time this information was published. Such trademarks may also
be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml

Other company, product and service names may be trademarks or

service marks of others.

‘@ Please Recycle

	Lab 1 Setting up the IBM® Rational® Team Concert (RTC) SDK
	1.1 Download and Unzip the Required Files from jazz.net

	__1. Download the product installation files.
	__a. Go to the RTC all downloads page for your version of RTC. As example for 4.0 at https://jazz.net/downloads/rational-team-concert/releases/4.0?p=allDownloads. The file sizes will vary from what is shown next.
	__b. Scroll down to the Web Installers section and download the highlighted file. This will be used to install the server (but not the client). You will need a jazz.net id. There are other options for download and install if you prefer. This workbook will use this method.
	__c. Scroll down to the License Keys section and download the highlighted file.
	__d. Scroll down to the Plain Zips section and download the highlighted client zip file.
	Also download the highlighted zip files for the Plain Java Client Libraries. Scroll down to the Source Code section and download the highlighted file.
	__e. Go to the feature based launches wiki page at https://jazz.net/wiki/bin/view/Main/FeatureBasedLaunches.
	__f. Download the attached com.ibm.team.dev.launch_0.3.3.201004231417.jar file. Make sure the file name is correct and has no other extension. If the download changed or added a different file name extension, rename the file.

	__2. Set up a directory structure to contain your extensions development and test environment.
	__a. Many people like to isolate their extensions development environment from their normal application development environment. This helps avoid blocking your application development work (which may be your day job) by a buggy extension you have created and deployed (during your extra time). This workshop will assume the following folder structure on the C: drive.

	__3. Install the RTC Eclipse client and a test server.
	__a. Unzip the Web Installer download into a temporary directory and run launchpad.exe.
	__b. Install the Jazz Team Server and CCM Application to C:RTC40DevinstallsJazzTeamServer.
	__c. Select Express Install
	__d. on the next screen select Jazz Team Server with Required Base Keys, including Trials, and CCM, QM and RM Applications
	__e. Provide the required password for administrative access and your Jazz.net user name and password.
	__f. If you do not already have Installation Manager installed, it will be installed at this time. After the install completes you can exit Installation Manager and the Launchpad. During the installation, you will need to change some items from their defaults. All the other default values are fine; in particular, be sure to install both the “Jazz Team Server and CCM Application” and the “Required Base License Keys, Including Trials....” installation packages. You can remove the applications Requirements Management and Quality Management, this workshop focuses on the Change and Configuration Management Application If the product is already installed you will be prompted select to continue installation.
	__g. If you are on Windows 7, change the Shared Resources Directory to be outside the Program Files or Program Files (x86) directories. These directories are virtualized and if any part of the server is installed into a virtualized directory, the server would have to be run as an administrator. Note that even if you are logged into Windows 7 as an administrator, the default when starting an application is to not run it as an administrator. You can put it anywhere you want, for example into C:IBMIBMIMShared as long as it is not virtualized.
	__i. Change the Installation Directory to C:RTC40DevinstallsJazzTeamServer.
	__ii. Review the installation packages. You may de-select Requirements Management and Quality Management as these are not needed for the workshop.

	__h. Unzip the Client for Eclipse IDE zip file to C:RTC40DevinstallsTeamConcert. Do not use Web Installer or any other Installation Manger method to install the client. You need a plain Eclipse layout for this workshop and not a layout that optimizes disk space via Installation Manger's area for shared features and plugins.
	__i. Your C:RTC40Dev folder will look pretty standard at this point. Much like setting up a sandbox or demo environment.

	__4. Add the feature based launches capability to the RTC Eclipse client.
	__a. Copy the feature based launches download file com.ibm.team.dev.launch_0.3.3.201004231417.jar into the folder C:RTC40DevinstallsTeamConcertjazzclienteclipsedropins. The dropins folder might not exist and then needs to be created by you.
	__b. Note that some users on Linux have reported that the file permissions on the jar placed in the dropins folder are set to 755 and that the feature based launches would not show up in the RTC Eclipse client until the permissions were changed to 644.

	__5. Unzip the development time files.
	__a. Unzip the RTC SDK zip file into C:RTC40Devinstallsrtc-sdk. This zip file has path lengths longer than 250 characters and may cause trouble for some extractor tools on Windows. One zip extractor tool that works is 7Zip. You or your extraction tool will need to create the rtc-sdk folder. It is not contained in the zip file.
	__b. Your C:RTC40Dev folder will now look a bit different.
	__c. Unzip the RTC Plain Java Client Libraries files into C:RTC40DevinstallsPlainJavaAPI.
	__d. Unzip the RTC Plain Java Client Libraries API Documentation files also into C:RTC40DevinstallsPlainJavaAPI. This result in this final folder structure.
	
	__6. Install the Workshop Setup tool.
	__a. Along with this lab document(s), you should have received or downloaded the file WorkshopSetup-V4-YYYYMMDD.zip.
	__b. Unzip this file to C:RTC40Devinstalls. Your installs folder should now finally look like below.
	1.2 Setup for Development

	__7. Start the Eclipse RTC client.
	__a. Start the RTC Eclipse client (C:RTC40DevinstallsTeamConcertjazzclienteclipseeclipse.exe).
	__b. When prompted, select an Eclipse workspace. These instructions will use C:RTC40DevworkspacesDev1WS. Note that it is “Dev1WS” and not “Dev1WS”. Either would work, but by default when you launch a runtime or debug session the Eclipse workspace for the launched process is created as a sibling to your workspace folder. By using the “Dev1WS” technique, this runtime workspace folder is created as a peer to “WS” inside the “Dev1” folder. The makes it easier to have other isolated development workspaces such as “ C:RTC40DevworkspacesDev2WS” without any collisions between launches that have the same name. Alternatively, you can specify a launch's workspace location, but isolating them using this technique is easier to remember.
	__c. Minimize the Welcome via this () button near the top of the window.

	__8. Switch Text file encoding to UTF 8
	__a. From the menu bar, select Window > Preferences. In the Preferences dialog, select� General > Workspace. In the Text file encoding section select Other and select the encoding UTF-8. This is important to be able to run the launches for debugging.
	__9. Create a new target platform.
	__a. From the menu bar, select Window > Preferences. In the Preferences dialog, select Plug-in Development > Target Platform and then click Add...
	__b. In the New Target Definition wizard, select Nothing: Start with an empty target definition and then click Next.
	__c. On the second page of the wizard, enter RTC SDK as the Name and click Add...
	__d. In the Add Content wizard, select Installation and then click Next.
	__e. On the second page of the wizard, enter C:RTC40Devinstallsrtc-sdk as the Location and then click Finish.
	
	__f. After the operation completes, click Finish in the New Target Definition wizard.
	__g. Back on the Preferences dialog, select the new Target Definition and then click OK.

	__10. Open the Plug-in Development perspective.
	__a. In the toolbar toward the right, click the Open Perspective button.
	__b. Then from the menu, select Other…
	__c. In the Open Perspective dialog, select Plug-in Development and then click OK.

	__11. Add RTC source code to Java search.
	__a. On the left, select the Plug-ins view.
	__b. From the view’s context menu click Select > All.
	__c. From the view’s context menu select Add to Java Search. There is quite a bit of code. This operation could take a while.
	1.3 Setup the RTC Tomcat Server

	__12. Setup to run the server in debug mode.
	__a. Open Windows Explorer and navigate to C:RTC40DevinstallsJazzTeamServerserver.
	__b. Open the server.startup.bat file with either Notepad or Wordpad.
	__c. Find the following line that starts with the following. It is near the bottom of the file.
	__d. After that line add these lines.
	__e. Be sure to keep all the other options. Note that the port to attach the debugger to is 3388. Save the file and close the editor.

	__13. Complete setup of the server.
	__a. Open a Windows Explorer and navigate to C:RTC40DevinstallsJazzTeamServerserver and run the server.startup.bat file (the same file you just edited).
	__b. After the server has finished starting (the “INFO: Server startup in nnnnn ms” message is displayed in the console), start your browser and enter the URL https://localhost:9443/jts/setup.
	__c. Login with ADMIN as both User ID and Password.
	__d. Use the Express Setup option.
	__i. Click Next.
	__ii. On the Configure Public URI page set the Public URI Root to https://localhost:9443/jts
	Test the connection, accept the warning in step 2 and click next.
	__iii. On the Create Administrative User page create a new administrator user
	Your screen should look as follows. Click next.
	__iv. Wait for the Express Setup to finish. Click Next.
	__v. On the Assign Licenses page make sure to Activate a RTC Developer trial license, if it is not already activated and assign a license to myadmin. Then click Finish.
	__vi. There is no need to create a lifecycle project.

	__14. You will now setup the workshop repository.
	__a. Browse to the folder C:RTC40DevinstallsWorkshopSetup. Make sure the folder exists and contains a file named WorkshopSetup.bat.
	__b. Open the file and review its content. It should look similar to below. If you followed the instructions above, you should be able to run the WorkshopSetup without issues. The file sets required information to run the setup such as the JAVA_HOME folder of a JDK, where to find the Plain Java Client Libraries and the login information for the repository.
	By default the JAVA_HOME file points to the JDK shipped with the RTC Eclipse client, if at all possible use this setting. If not, make sure JAVA_HOME is set to a Java Development Kit version 1.6 or higher.
	If your setup is different, edit WorkshopSetup.bat to match your environment. Dependent on your environment you can choose other options to set the environment variables in the file. If you change the file save the change before running it.
	Make sure to the paths match your setup. E.g. if you use a different folder for the workshop, enter the correct path.
	__c. Run C:RTC40DevinstallsWorkshopSetupWorkshopSetup.bat.
	Make sure the setup is executed and shows a success and close the shell.
	In case of errors, carefully read the error message, check the paths, especially to your Java JDK and make sure it is available.
	
	__15. Import the 10 Free Developer CALs. The license assignments in the repository will be preserved (myadmin has a Developer CAL).
	__a. Locate the RTC-Developer-10-C-License-4.0.zip file and remember where you placed this file. You will next upload it to your server.
	__b. Open or return to your browser and open this URL: https://localhost:9443/jts/admin#action=com.ibm.team.repository.admin.manageLicenses
	__c. When prompted, enter myadmin for both the User ID and Password.
	__d. In the Client Access License Types table, click Add...
	__e. In the Upload License Files dialog, use the Browse button to locate the RTC-Developer-10-C-License-4.0.zip file. The file will be uploaded and the Next button will activate. Click Next and jazz.net will be contacted to register your free licenses.
	__f. Read the license that is presented then select I accept the terms in the license agreement. Then, click Finish.
	__g. The Client Access License Types table will now show your 10 free Developer CALs in addition to the trial developer CALs. The other CALs are still in place. In addition, the assignment of a Developer CAL to the ADMIN id has been upgraded to one of the free Developer CALs. The trial developer CALs are no longer assignable.
	1.4 Complete Setup of Your RTC Eclipse Client

	__16. Return to the RTC Eclipse client you already have running. If you shut it down earlier, start it again (C:RTC40DevinstallsTeamConcertjazzclienteclipseeclipse.exe) using the C:RTC40DevworkspacesDev1WS workspace. Also, make sure you are in the Plug-in Development perspective that you opened earlier.
	__17. Connect to the project area.
	__a. On the left, switch to the Team Artifacts view and click the Accept Team Invitation link.
	__b. In the Accept Team Invitation wizard, enter the following in the text field and then click Finish.
	__c. When prompted, make sure myadmin is entered for both the User ID and Password. Also, check the Save password and Automatically log in check boxes. Then click OK.
	__d. If prompted with a Repository Connection Certificate Problem, select the Accept this certificate permanently radio button and then click OK.
	__e. Close the project area editor that opens.

	__18. Load the workshop repository workspace.
	__a. In the Team Artifacts view, expand the My Repository Workspaces node, right click the RTC Extension Workspace and then select the Load… action from then menu.
	__b. In the Load Repository Workspace wizard, make sure Find and load Eclipse projects is selected and then click Finish.
	__c. Verify that there are now four new Eclipse projects in your Package Explorer view. Two of these projects define the common (net.jazz.rtcext.workitem.extensions.common) and service (net.jazz.rtcext.workitem.extensions.service) parts of your component (component in this context will be defined at the top of lab 2). You will use these in subsequent labs. The third (RTC Extension Workshop Configuration) contains Eclipse launch configurations. In the rest of this lab you will learn how to use these launches. The fourth project (RTC Extension Lab Code License) contains the license agreement for the sample code you are using in this workshop.
	__d. You will also notice in the Pending Changes view, that there are incoming change sets and baselines. Do not accept them. You will make use of them in later labs. If the Pending Changes view is not open, select Window > Show View > Other… from the menubar, type pending into the filter field and then double click the Pending Changes entry.

	__19. Gather remaining configuration files for Jetty based launches.
	__a. The RTC Extension Workshop Configuration project also contains some configuration files for use by the Jetty based launches. There are two files that need to be included but are not part of what was just loaded. You will now copy them from your server installation in order to make sure they match the version of your server and SDK.
	__b. The two files you need are services.xml and scr.xml from your server's ccm application configuration. You will find them in the C:RTC40DevinstallsJazzTeamServerserverconfccm folder.
	__c. You can drag or copy them from the Windows Explorer into the confjazz folder in the RTC Extension Workshop Configuration project in the Package Explorer view.
	__d. This will give you two unresolved local changes in the Pending Changes view. You do not need to do anything with these.

	__20. Import plugins for Jetty based launches. There are three plugins you will need to import (one from the RTC SDK and two from your installed server) for use with the Jetty based launches that you will try out later in this lab.
	__a. First, import the JUnit test plug-in that contains the database creation code. From the menu bar, select File > Import… and then in the Import wizard, select Plug-in Development > Plug-ins and Fragments as shown here and then click Next.
	__b. On the second page of the wizard, make sure your selections match those shown here. The only one you should have to change is highlighted. Then, click Next.
	__c. On the third page of the wizard, enter common.tests.utils into the ID field. This will filter the plug-ins list. Select the com.ibm.team.common.tests.utils plug-in in the list, click Add --> and then click Finish.
	__d. Next, import the server license from the server installation. This will override the development time server license you would otherwise be using in a Jetty launch with the permanent server license. It is likely that the development license has expired. As before, from the menu bar, select File > Import… and then in the Import wizard, select Plug-in Development > Plug-ins and Fragments as shown here and then click Next.
	__e. This time on the second page of the wizard, make sure your selections match those shown here and then click Next. The major difference from last time is the selection of a different place to import from. The Plug-in Location field should be set to (use the Browse… button to find it): C:RTC40DevinstallsJazzTeamServerserverconfjtssiteslicense-update-site
	__f. On the third page of the wizard, select the com.ibm.team.jazz.foundation.server.licenses.enterprise-ea plug-in in the list. Then click Add --> and finally click Finish.
	__g. Finally, import the client access licenses (CALs) from the server installation. As before, from the menu bar, select File > Import… and then in the Import wizard, select Plug-in Development > Plug-ins and Fragments as shown here and then click Next.
	__h. This time on the second page of the wizard, make sure your selections match those shown here and then click Next. The major difference from last time is the selection of a different place to import from. The Plug-in Location field should be set to (use the Browse… button to find it): C:RTC40DevinstallsJazzTeamServerserverconfjtssitesclm-activation.
	If you can not find any of these folders, you probably forgot to install the “Rational Team Concert Required Base License Keys, Including Trials” installation package back at step 3.b. You will need to return to the server installation and install this package into the same package group as your server. You can then return to this step. Later, you will want to confirm that your myadmin user has a developer CAL.
	__i. On the third page of the wizard, select the com.ibm.team.licensing.product.clm plug-in in the list. In case you installed the RTC standalone ZIP version choose com.ibm.team.licensing.product.rtc-standalone. Then click Add --> and finally click Finish.

	__21. Import a feature to make launching the RTC Eclipse client much easier. In the simple zip file installation of the RTC Eclipse client, there is an umbrella feature that includes all the RTC Eclipse client features. This feature is not in a client installed via Installation Manager nor is it in the RTC SDK. It is, however, very convenient for launching a RTC Eclipse client for debug.
	__a. From the menu bar, select File > Import… and then in the Import wizard, select Plug-in Development > Features as shown here and then click Next.
	
	__b. On the second page of the wizard
	__i. Deselect the Choose from features in the target platform checkbox.
	__ii. The Feature Location field should be set to (use the Browse… button to find it): C:RTC40DevinstallsTeamConcertjazzclienteclipse.
	__iii. Click Deselect All.
	__iv. Type rtc.clien to narrow down the selection. Scroll down the list to the com.ibm.team.rtc.client.feature and check it.
	__v. Click Finish.

	1.5 Test connecting the Eclipse debugger to Tomcat

	__22. Set a breakpoint to be used to verify the debugging connection.
	__a. In your RTC Eclipse client (in the Plug-in Development perspective you opened earlier), select Navigate > Open Type… from the menu bar.
	__b. In the Open Type dialog type *active*ser in the pattern field. Several types will appear (depending on the version). Select the ActiveServiceDTO interface as shown here and then click OK.
	__c. When the Java editor opens on the class, the class name will be highlighted. Right click the class name and select References > Workspace.
	__d. The first entry in the Search results view is the one you want. Double click the ServerStatusRestService class to open an editor on it.
	__e. The Outline view now shows the structure of the ServerStatusRestService class. In the Outline view, click the getActiveServiceInfo() method.
	__f. The editor is now showing the getActiveServiceInfo() method. Set a breakpoint on the first line of the method. Right click in the shaded area to the left of the first line to get the menu.

	__23. Attach the Eclipse debugger to the RTC server.
	__a. From the Debug toolbar icon dropdown select Debug Configurations…
	__b. In the Debug Configurations dialog, expand the Remote Java Application launch type, select the [RTCExt] Debug Running Tomcat launch configuration and then click Debug. If you had to use a different debug port when starting Tomcat, adjust the Port value here before debugging. Also note that if you switch to the Common tab that the Save as location is set to inside one of the projects you loaded (RTC Extension Workshop Configurationlaunches). This will be true for all the launches you use with this workshop. You may also notices some other launches that start with [Standard]. These come from the test plugin you imported from the RTC SDK. You will not use them in this workshop.

	__24. Use the RTC Web UI to trigger the breakpoint.
	__a. Open your browser (if it is not already open) and enter the URL https://localhost:9443/ccm/admin.
	__b. If prompted, login with myadmin as both User ID and Password.
	__c. When the Status Summary page appears, click the Active Services link on the left.
	__d. The breakpoint will trigger and the RTC Eclipse client should come to the foreground (or flash in the Windows taskbar if minimized). If you are prompted to switch to the Debug perspective, click the Remember my decision checkbox if you wish, and then click Yes.
	__e. You will now be in the Debug perspective stopped at the breakpoint you set earlier.
	__f. Click the Resume toolbar button to resume execution of the server.
	__g. Return to your browser and note that the Active Services page is now showing. Close your browser window.
	__h. Disconnect the debugger from the running Tomcat server by clicking the Disconnect toolbar button.
	1.6 Test the Jetty Based Server Launch

	__25. Create the development time repository database. Note that this process will create a “server” folder as a sibling of your Eclipse workspace. The database and eventually its indexes will be contained within this folder. If you ever want to delete the database and indexes and recreate them, you can simple delete the server folder and rerun this process.
	__a. The database creation test you are about to run uses a Jetty server during initialization of the database. Unfortunately, that server must run at the same ports as the Tomcat server you currently have running. You will need to temporarily stop the Tomcat server. You will be able to restart it after the database is created. This will not be a problem when running your Jetty test server. It and the Tomcat server will use different ports. So, return to the Windows Explorer and navigate to C:RTC40DevinstallsJazzTeamServerserver and run the server.shutdown.bat file. Wait for the server to stop and then proceed with the next step.
	__b. Select Run Configurations… from the dropdown menu off the Run toolbar icon.
	__c. On the Run Configurations dialog, select JUnit2 Launch > [RTCExt] Create RTC Test Database and then click Run. Note that if you switch to the Bundles tab, you will see that three of the bundles you imported earlier (the test bundle that creates the database and the licenses) are included in this launch. You will learn about adding your own bundles to launches in subsequent labs.
	__d. This may take a while to run. The Console view will appear and show quite a bit of output. The JUnit view will also be active. When the database creation is complete, the JUnit view will show success. Note that the Console view will show some exceptions. The important thing is that the JUnit view shows success. If it fails, make sure you have shut down RTC and retry until it succeeds.
	__e. You can now restart your Tomcat server. Return to the Windows Explorer and navigate to C:RTC40DevinstallsJazzTeamServerserver and run the server.startup.bat file.

	__26. Launch the Jetty server for debug.
	__a. Select Debug Configurations… from the dropdown menu off the Debug toolbar icon.
	__b. In the Debug Configurations dialog, select OSGi2 Launch > [RTCExt] Jetty RTC Server and then click Debug. Note that on this Bundles tab, that two of the bundles you imported earlier (the licenses) are included in this launch. You will learn about adding your own bundles to launches in subsequent labs. Also notice the list of System Properties. Many of these will be familiar to you if you have ever administered a Jazz server (location of the repository, index locations, public URL, etc). There are also two Jetty properties for setting the ports. The primary port you will used with this server is 7443 rather than 9443.
	__c. Switch to the Console view. Log messages will appear indicating that the Jetty server has started. You might see Framework Manager exceptions. These can be ignored.

	__27. Connect with your browser.
	__a. Start your browser and navigate to this URL: https://localhost:7443/jazz/admin. You may need to add another security exception (note that the port is different).
	__b. Log in with TestJazzAdmin1 as both the User ID and Password. For this workshop we will use the myadmin user for the Tomcat server and this other administrator id for the Jetty launched server. This will hopefully make things a little less confusing in that it will be more clear as to which server is being used. This new administrator id was created along with the database you created earlier. There are several other ids that were created then too.
	__c. If you switch back to your RTC Eclipse client, you will now notice many more log messages in the Console view. These will include entries about a successful connection to the repository database you created earlier. Dependent o

	__28. Activate the Licenses. In the 4.0 products you need to activate the trial licenses to be able to use them. You will now perform this step in the Jazz Team Server Administration pages. In newer versions the developer trial licenses are already activated. And you can continue after verifying the fact.
	__a. Navigate to the License Key Management page at https://localhost:7443/jazz/admin#action=com.ibm.team.repository.admin.manageLicenses
	__b. Find the trial license entry for “Rational Team Concert 4.0 Developer” and activate the trial license.
	__29. Trigger the breakpoint set earlier.
	__a. Click the Jazz Team Server - Server Administration link under Manage the Server.
	__b. As before, click the Active Services link on the left.
	__c. The breakpoint will trigger and the RTC Eclipse client should come to the foreground or flash in the Windows taskbar. If you are prompted to switch to the Debug perspective, click the Remember my decision checkbox if you wish, and then click Yes.
	__d. You will now be in the Debug perspective stopped at the breakpoint you set earlier.
	__e. Click the Resume toolbar button to resume execution of the server.

	__30. Complete the test.
	__a. Return to your browser and note that the Active Services page is now showing. Close your browser window.
	__b. You can now return to the RTC Eclipse client and terminate the server by clicking the Terminate toolbar icon in the Debug view as shown here or in the Console view.
	1.7 Test the RTC Eclipse Client Launch

	__31. Launch the RTC Eclipse client under debug.
	__a. Select Debug Configurations… from the dropdown menu off the Debug toolbar icon.
	__b. In the Debug Configurations dialog, select Eclipse2 Application > [RTCExt] RTC Eclipse Client and then click Debug. Note that on this Bundles tab, that the feature you imported earlier (the RTC client feature) is included in this launch. If you switch to the Main tab, you will notice two important settings.
	__i. First, the launch is configured to prompt you to see if you want to clear the Eclipse workspace being used by the launched client (not the one you are in now) before launching. Usually you will answer no (and you can change the settings to not clear at all if you wish) but occasionally you will find it useful. You will not see the prompt for clearing the workspace the first time you use this launch since the workspace does not yet exist.
	__ii. Second, the product being launched is the com.ibm.team.concert.product.

	__32. The RTC Eclipse client will launch and you can use it as you normally would.
	__a. If you hit a client side breakpoint, your original RTC Eclipse client will surface to handle the debugging.
	__b. If you launch one of your servers under debug as before, you can create repository connections from your launched client to your launched server and debug both sides of your connection.

	__33. Close the RTC Eclipse client you just launched under debug.
	__34. Shutdown unless proceeding to lab 2.
	__a. Close your RTC Eclipse client (the original one where you loaded code from the RTC server running under Tomcat).
	__b. Return to the Windows Explorer and navigate to C:RTC40DevinstallsJazzTeamServerserver and run the server.shutdown.bat file.

	Lab 2 Create a Simple Build on State Change Operation Participant
	2.1 Create a Basic Server Side Service

	__35. If your RTC development environment is not open, navigate to C:RTC40DevinstallsTeamConcertjazzclienteclipse in the Windows explorer and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one you created in lab one. If you are in a classroom environment where lab one was done for you, select the Eclipse workspace as directed by your instructor. If the Plug-in Development perspective is not open, open it now by selecting Window > Open Perspective > Other… > Plug-in Development from the menu bar.
	__36. Return to the lab two code.
	__a. In lab one, you loaded a repository workspace. Along with the launches that you used in lab one, this also loaded the lab two code. Return to the Package Explorer view. Verify that the two projects that define the common (net.jazz.rtcext.workitem.extensions.common) and service (net.jazz.rtcext.workitem.extensions.service) parts of your component are present. In the rest of this lab you will learn about the various parts of this initially simple participant.
	__b. You will also notice in the Pending Changes view, that there are incoming change sets and baselines. Do not accept them. You will make use of them in later labs. If the Pending Changes view is not open, select Window > Show View > Other… from the menubar, type pending into the filter field and then double click the Pending Changes entry.

	__37. Understanding the common plug-in Eclipse project.
	__a. If you are just creating operation participants, the common project is usually pretty simple. It defines the component and other items (constants in this case) that are needed by both the server and client side portions of your component. At this time, you only have the server side portion, so the common project is not strictly needed, but in a future lab, you will add the client side portion.
	__b. In the Package Explorer view, expand the tree for the common project (net.jazz.rtcext.workitem.extensions.common) and double click the plugin.xml file. The editor that opens presents information from not only the plugin.xml file but also the build.properties and META-INF/MANIFEST.MF files. The content reflects standard Eclipse plug-in practices, for example, including qualifier as the last element of the plug-in Version on the Overview tab (see http://help.eclipse.org/helios/topic/org.eclipse.pde.doc.user/tasks/pde_version_qualifiers.htm).
	__c. The most interesting part for your purposes is found on the Extensions tab. There is an instance of the com.ibm.team.repository.common.components extension point. It uses the id net.jazz.rtcext.workitem.extensions and the name RTC Extensions Workshop Workitem Extensions. This entry defines your component. Since it uses a repository common extension point, this plug-in also declares a dependency on the com.ibm.team.repository.common plug-in on the Dependencies tab.
	__d. Back in the Package Explorer view, expand the src/net.jazz.rtcext.workitem.extensions.common source package and then double click the IComponentDefinitions.java file. This file contains constants that pertain to the component as a whole. In this case there is just a constant for the component’s id.
	__e. Once again in the Package Explorer view, in the same package, double click the IBuildOnStateChangeDefinitions.java file. This file contains constants that are particular to the build on state change participant. Right now, it contains just the id for the participant. This will change in future labs.

	__38. Understanding the service plug-in Eclipse project.
	__a. In the Package Explorer view, expand the tree for the service project (net.jazz.rtcext.workitem.extensions.service) and double click the plugin.xml file. Once again, there is a set of standard Eclipse plug-in definitions. Also, the most interesting part is once again on the Extensions tab. On the left side, you see an instance of the com.ibm.team.process.service.operationParticipants extension point. All server side operation participants are defined using this extension point. In the following steps, you will explore most of the nodes in this tree. Note that the tree is a structural editor for the xml that comprises the definition. The text in parenthesis on each line is the name of the xml element for that line. The raw xml can be seen on the plugin.xml tab of the editor.
	__b. Select the Build on State Change (operationParticipant) element on the left then the right side of the editor will look like this. The class and operationId attributes are the two most critical attributes. The class is the Java code that implements the service (more on that soon) and the operationId identifies the Jazz operation for which the participant is valid. In this case, the work item save operation. The id attribute identifies this participant definition and is the same as the constant IBuildOnStateChangeDefinitions.EXTENSION_ID. You will add a schema in a future lab.
	__c. Select the net.jazz.rtcext.workitem.extensions.service.BuildOnStateChangeParticipant (extensionService) element on the left and the right side of the editor will look like this. Note that this element is optional. It is only required if the participant will require services from other components. The value in the componentId field should look familiar. It is the id given to the component in the common plug-in’s plugin.xml file. This ties the participant to the component. When defining an operation participant, the implementationClass attribute, is typically set to the same class as the class attribute in the last step and that is the case here. This single class serves as both the participant and a basic service implementation through which the required services will be found. As you will soon see, this is much easier than it sounds.
	__d. If you select the (prerequisites) node, you will see that it has no attributes.
	__e. Skip over the children of the (prerequisites) node for a moment and select the (description) node. On the right, you will see the description of the operation participant.
	__f. Up to now, all the work you would do to create this definition is possible from this one place using the Add… button and the New > cascade menu from the various element’s pop-up menus.
	__g. Unfortunately, this is not the case for the children of the (prerequisites) node. You can edit the nodes that are there, but to add a new (requiredService) node, you need to edit the xml on the plugin.xml tab. The syntax is pretty simple. Here you see three required services. You will see how these services are used by the participant later.
	__h. As you may have guessed, this service plug-in has many more plug-in dependencies than the common plug-in. There are dependencies on process for the operation participant extension itself and on other components for the services the participant will use. Here they are from the Dependencies tab.

	__39. Understand the code within the service plug-in Eclipse project
	__a. Back in the Package Explorer view, expand the src/net.jazz.rtcext.workitem.extensions.service source package and then double click the BuildOnStateChangeParticipant.java file. This file contains the participant implementation. There are several interesting parts to this class. First, note the class javadoc comment. The first paragraph repeats the description you saw in the plug-in.xml file. The remaining text is critical to understand for anyone implementing operation participants, that is:
	__b. Next, note the declaration of the class. The class implements the com.ibm.team.process.advice.runtime.IOperationParticipant interface. All operation participants implement this interface. It defines the run method. The class also extends the AbstractService class. Only participants whose extension definition in the plugin.xml file contains the optional extensionService element have to extend this class. Recall that you needed the extensionService element to declare the prerequisite services. Even though the AbstractService class is indeed abstract, there are no abstract methods left that this class has to implement. This class will, however, use methods from AbstractService to locate the prerequisite services.
	__c. Note that a default constructor is required for an operation participant but is not explicitly defined here. The default constructor added by the Java compiler is typically sufficient for an operation participant.
	__d. Take a look at the run method javadoc comment. Note that the participant is called for each work item save operation but only if the participant has been configured for a project area or team area’s work item save operation behavior. You will see that configuration later. The rest of the comment describes each parameter in detail. This initial implementation only makes use of the operation parameter.
	__e. Note the first comment block in the body of the run method. The point here is that there are often several checks your code will make in order to decide if there is action to take. In deciding which order to check them, take into account the cost of the check (put more expensive checks later) and the likely hood that the check will make your code decide there is nothing to do (put more likely to fail checks earlier). Ideally, you want fast and likely to fail checks first and slower less likely to fail checks later. Of course, sometimes you will be faced with slow likely to fail or fast unlikely to fail checks and it will be a bit more difficult to decide on an ordering. The order of checks here is:
	__i. Is the data passed to the participant really for a work item save operation? This should always pass but it is a best practice to make this check first.
	__ii. Has the state id (the workflow state) changed? Note that the case of saving a new work item is handled in these lines. In the case of a new work item, the oldState (the full state data of the work item, not the workflow state) will be null. And in the last line, note that Identifier<T>#equals(null) always returns false and the overall test will pass so that one could have the work item type’s initial state be the target state.
	__iii. Is the work item of the type in which the participant is interested? Right now the work item type id is hard coded to the Story type from the Scrum template. You will change that later.
	__iv. Is the work item now in the state (workflow state) in which the participant is interested? Right now the work item state id is hard coded to the Story type’s Implemented state (it does not look like it with the word tested at the end, but it is). You will change that later.

	__f. If all those checks pass, a build request is made by calling the participant’s build method. Note that the build definition id is also hard coded. That will also change later.
	__g. Conceptually, the build method is pretty simple. There are two lines (using the team build service) to find the build definition and two lines (using the team build request service) to request a build for that definition. The key element at this point is the comment between the two sets of lines. Notably, that there are things that can go wrong here that are not being handled. That will be corrected in the next lab.
	__h. So there you have a pretty simple participant that boils down to a few simple status checks in the run method and four lines of code to request a build. There is one more thing to do before leaving this editor. That is, set a breakpoint at the first line of the run method. You will step through it several times in this lab. Double click in the margin next to the first line of the run method to set the breakpoint. A small blue circle will appear after you double click.
	2.2 Launch the Server for Debug Using Jetty

	__40. Create the launch configuration.
	__a. From the Debug toolbar dropdown, select Debug Configurations…
	__b. In the Debug Configurations dialog, expand the OSGi2 Launch tree and right click the [RTCExt] Jetty RTC Server configuration and then from the popup menu, select Duplicate. Note that you are not changing the existing launch but creating a copy of it. You should keep the original launch around unchanged to use as a known working base from which to create other launch configurations.
	__c. Change the Name of the new configuration to [RTCExt] Build on State Change - Jetty RTC Server.
	__d. Add your participant’s two bundles to the configuration. Click on the Bundle link and in the Add Bundle dialog, type rtcext in the filter field, select the common plug-in and then click OK. Repeat, but select the service plug-in this time. Your launch configuration should look like this.
	__e. Click Apply to save your changes but do not close the dialog.

	__41. Launch the server.
	__a. Click Debug at the bottom of the Debug Configurations dialog.
	__b. As in lab 1, the Console view will show a few log messages indicating that the Jetty server is up and running.
	__c. The next time you want to debug this server configuration, you will be able to click a shortcut to it on the dropdown of the Debug toolbar icon. You will not need to open the Debug Configurations dialog.
	2.3 Launch an RTC Client and Connect to the Server

	__42. Launch the RTC Client.
	__a. From the dropdown menu of the Run toolbar icon, select RTC Client. Note that you are just running the client and not debugging. The same launch configuration can be used for both. You will debug a client in a future lab.
	__b. The RTC Eclipse client will start up and should look familiar. If you are prompted to clear the runtime workspace, click Yes (you will usually click No, but this time start fresh). Minimize the Welcome screen via this () button near the top or right of the window.

	__43. Connect to the debug server.
	__a. You will be in the Work Items perspective and the Team Artifacts view will be on the left. In the Team Artifacts view, click the Create a Repository Connection link.
	__b. In the Create a Jazz Repository Connection wizard, set the URI to https://localhost:7443/jazz and the User ID and Password fields to TestJazzAdmin1. Note that it is a ‘7’ and not a ‘9’ in the URI. Then, click Finish. Note that “jazz” is the correct context root and not “ccm”. Recall from lab one that this launch runs the server as one application at the “jazz” context root and not as separate JTS and CCM applications. This is generally fine for development and you do have the Tomcat server with split applications for final testing (a later lab).
	__c. You will now have a repository connection in your Team Artifacts view.
	__d. Right click your repository connection and from the pop-up menu select Open My User Editor. In the user editor that opens, find the Client Access Licenses section at the lower right and make sure the Rational Team Concert – Developer checkbox is selected. Save and close the editor. You will use the TestJazzAdmin1 user id for several operations that require a developer client access license.
	2.4 Edit the Process to Use the Participant

	__44. Create a project area.
	__a. Right click your repository connection and from the pop-up menu select New > Project Area. In the Create Project Area wizard, set the Name to Test Project 1 and click Next.
	__b. On the second page of the wizard, click the Deploy Templates button. This operation may take a bit of time. When it completes, you will be on the next page of the wizard. Select Scrum on the left and then click Finish. When the operation completes and the project area editor opens, leave the editor open for the next couple steps.

	__45. Add TestJazzAdmin1 as a member of the project area.
	__a. On the Overview tab of the project area editor, expand the Members section and click Add…
	__b. In the Add Team Members wizard, type Test into the Enter user name field and then click Search. Then, select TestJazzAdmin1 in the Matching users list, click Select (moves TestJazzAdmin1 to Selected users) and then click Next.
	__c. On the second page of the wizard, select Scrum Master on the left, click Add --> (moves the selection to the right) and then click Finish.
	__d. Back on the project area editor’s Overview page, click Save (at the upper right) but leave the editor open for the next step.

	__46. Add the build on state change participant to the work item save operation.
	__a. Switch to the Process Configuration tab and then on the left, expand the Team Configuration tree then select Operation Behavior. Then, on the right, scroll down to the Work Items > Save Work Item (server) operation and select the Everyone (default) column next to it as shown here.
	__b. Scroll down to find the Follow-up actions section on the right. Initially, the list will be empty. Click Add… then on the Add Follow-up Actions dialog, select Build on State Change (your new participant!) and click OK. Build on State Change will now be in the list and when it is selected, the window will look like the following image. Finally, click Apply changes and then click Save at the upper right of the editor.
	__c. Make sure you have saved your changes, otherwise the next steps will fail. You may now close the project area editor and any other editors that may still be open.
	2.5 Trigger the Participant

	__47. Create the “our.integration.build” build definition. You just need a simple build definition to test the participant. The build does not need to run properly. The participant just needs to make requests for it.
	__a. In the Team Artifacts view, expand the Test Project 1 node, right click Builds and then click New Build Definition…
	__b. In the New Build Definition wizard, make sure Create a new build is selected and then click Next. On the second page of the wizard, change the ID to our.integration.build, make sure Ant - Jazz Build Engine is selected and then click Finish.
	__c. In the build definition editor that opens, switch to the Ant tab, and enter a path for the Build file and then click Save. You may now close the editor. Note that the build file does not exist and any path will work for the current purpose. If you wish, you can use the Build file path shown (./buildLocation/build.xml). Also note that a default build engine is created at this time and is associated with your new build definition. This actually is important. If there was no build engine for your build definition, the participant’s request for a build would fail.

	__48. Create a Story work item.
	__a. Click the dropdown menu arrow next to the New Work Item toolbar icon and then click Story.
	__b. In the new work item editor that opens, set the two required fields and shown here and then click Save in the upper right corner.
	__c. The breakpoint you set earlier is now hit. The RTC Eclipse client in which you were studying the code will now surface (if asked about switching to the debug perspective, click Yes). If it does not surface, you probably minimized it earlier. In this case, it will be flashing in the Windows taskbar. Click it in the taskbar to surface the debugger. You should see something like this. Step through the run method using the Step Over button or F6. The check for the target state will fail and the run method will exit without requesting a build. After that check fails, be sure to click the resume button ().
	__d. Switch back to the launched RTC Eclipse client where you created the work item. Your work item will be successfully saved, and will be in the New state. If it shows a failure due to timeout, close the editor without saving, recreate the Story and when the breakpoint hits, just use the resume button ().

	__49. Move the Story to the Implemented state.
	__a. At the upper right portion of the work item editor, select Set Implemented and then click Save.
	__b. Once again the breakpoint is hit and your debugger surfaces (or you need to click it in the Windows taskbar). Step through the code again. When you get to the call to the build method, use the Step Into button (). You can then step through the four lines that request the build and then click the resume button ().
	__c. Switch back to the launched RTC Eclipse client where you created the work item. Your work item will be successfully saved. In the Team Artifacts view, double click the our.integration.build build definition.
	__d. The Builds view opens showing the build request the participant just submitted.
	2.6 Rename Build Definition and Try Again

	__50. Rename the build definition.
	__a. In the Team Artifacts view, right click the our.integration.build build definition and then click Open Build Definition.
	__b. In the build definition editor change the ID to our.integration.build.renamed and then click Save. Do not close the editor as you will want to rename it back soon.

	__51. Move the story to the Implemented state again.
	__a. Switch back to the work item editor and select Reopen from the state dropdown and then click Save. When the debugger surfaces, just click the resume button (). You are not to the interesting bit yet.
	__b. Again in the work item editor, select Complete Development from the same dropdown and click Save again.
	__c. This time, when the debugger surfaces, use the step over button to get to the build method call and then use the step into button. Step through the build method and note the major difference this time. The call to get the build definition returns null and the request of the build throws an exception. Click the debugger’s resume button. Then switch back to your work item editor and note the red at the top, “Exception running followup action”. It is actually a link to the Team Advisor view. Click it now.
	__d. The Team Advisor view appears with more information on the error. Click the Show Detail Tree button.
	__e. The left side of the view changes to show the structure of the error condition. Click the nodes on the left to see what information is available. It is clear that better information would be helpful. For example, a messages stating that the participant was looking for a particular build definition but could not find it would make it much easier to fix the problem. In the next lab, you are going to work on this.
	__f. Switch back to the build definition editor and change the ID back to our.integration.build and click Save.
	__g. Switch back to the work item editor and click Save. When the debugger surfaces, you can step into the build method again or just hit resume. Once you do resume, the work item save should complete okay. Return to the work item editor to confirm this. If you go to the Team Advisor view and turn off the Show Failures Only filter (see highlight below), you can browse the results of this successful operation. Also, if you refresh the Builds view, you will now see two pending build requests.

	__52. Close down the launched client and server.
	__a. Close the launched RTC Eclipse client where you were working with the Story and build definition (logged in as TestJazzAdmin1).
	__b. Back in the original RTC Eclipse client, go to the Console view and click the Remove All Terminated Launches icon (to remove the console for the client and surface the server console) and then the Terminate icon.

	Lab 3 Add Error Handling
	3.1 Understanding Error Handling Code

	__1. If your RTC development environment is not open, navigate to C:RTC40DevinstallsTeamConcertjazzclienteclipse in the Windows explorer and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one you used in lab two. If the Plug-in Development perspective is not open, open it now by selecting Window > Open Perspective > Other… > Plug-in Development from the menu bar.
	__2. If it is already open, you may need to log back into the server. Recall, that you had to shut the server down earlier and this should be your first interaction with it again since then. Go to the Team Artifacts view and check the status of your repository connection.
	__3. Browse and load the Lab 3 code.
	__a. In the Pending Changes view, click the Expand to Change sets icon. This will show 3 incoming baselines as shown here.
	__b. Right click the Lab 3 Code baseline under the RTC Extension Workspace node, and then click the Expand Children action. This will reveal all the changes made for lab 3. As you can see just the participant implementation class itself has changed.
	__c. Double click the changed class to open a comparison editor. You may want to double click the tab of the opened editor to maximize it.
	__d. Browse the changes and you will notice these key changes. The additional behavior will be discussed in detail after the code is loaded.
	__i. The collector parameter to the run method is now passed through to the build method where it will be used.
	__ii. The build method now checks for several error conditions in this order.
	__iii. In all cases, even success, information is added to the collector.

	__e. Close the comparison editor and then in the Pending Changes view, right click the Lab 3 Code baseline under the RTC Extension Workspace node, and then click the Accept action. This will accept and load the lab 3 delta on top of what you already have loaded from lab 2.

	__4. Understand the error handling code.
	__a. Back in the Package Explorer view, expand the src/net.jazz.rtcext.workitem.extensions.service source package and then double click the BuildOnStateChangeParticipant.java file.
	__b. First, make sure the breakpoint at the start of the run method is still present and active. If it is not, add the breakpoint again by double clicking in the left margin next to the first line. Note that the load of the updated code may have moved the breakpoint into a comment. If that is the case, remove the breakpoint and create a new one at the start of the run method.
	__c. Scroll down to the build method. Note as before that the information collector is now passed to the build method.
	__d. The first change to the body of the method is to check that the build definition was actually found.
	3.2 Launch the Server for Debug Using Jetty

	__5. Use the existing launch configuration from lab 2.
	__a. From the Debug toolbar dropdown () in the toolbar, select [RTCExt] Build on State Change - Jetty RTC Server.
	__b. As in lab 1, the Console view will show a few log messages indicating that the Jetty server is up and running.
	3.3 Launch an RTC Client and Connect to the Server

	__6. Launch the RTC Client.
	__a. From the dropdown menu of the Run toolbar icon, select [RTCExt] RTC Eclipse Client. Note that you are just running the client and not debugging. The same launch configuration can be used for both. You will debug a client in a future lab.
	__b. If prompted do not clear the runtime workspace. You will probably answer no for this question for the rest of this workshop. You can turn off the prompt by editing the launch configuration.
	__c. The RTC Eclipse client will start up and will connect automatically to the Jetty server you just launched via the repository connection you created in lab 2. The project area will still be connected and is configured for the participant since you did that in lab 2.
	3.4 Trigger the Participant

	__7. Find the Story work item used in lab 2 (it is probably number 7) e.g. in the work item history and move it out of the Implemented state (via the Reopen action) or create a new story.
	__a. Either of these will cause the breakpoint you set earlier to trigger. If it does not trigger, check if the breakpoint is set to to correct line of code. If necessary remove the old break points and add a valid one. And change the state of the story back. The RTC Eclipse client in which you were studying the code will now surface (if asked about switching to the debug perspective, click Yes). If it does not surface, you probably minimized it earlier. In this case, it will be flashing in the Windows taskbar. Click it in the taskbar to surface the debugger.
	__b. If you wish, step through the run method using the Step Over button or F6. The check for the target state will fail and the run method will exit without requesting a build. In any case, be sure to click the resume button ().
	__c. Switch back to the RTC Eclipse client where you created the work item. Your work item will be successfully saved. If it shows a failure due to timeout, close the editor without saving, recreate the Story (or reedit the existing Story) and when the breakpoint hits, just use the resume button ().

	__8. Move the Story to the Implemented state.
	__a. At the upper right portion of the work item editor, select Set Implemented or Complete Development (depends on which workflow state the story is currently in) and then click Save.
	__b. Once again the breakpoint is hit and your debugger surfaces (or you need to click it in the Windows taskbar). Step through the code again. When you get to the call to the build method, use the Step Into button (). You can then step through the check and status code that have been added around the same four core lines of code that request the build. Remember to click the resume button () when done stepping.
	__c. Switch back to the RTC Eclipse client where you created the work item. Your work item will be successfully saved. If it shows a failure due to timeout, try saving again and when the breakpoint hits, just use the resume button ().
	__d. If you go to the Team Advisor view and check to make sure the Show Failures Only filter is off and Show Detail Tree is on (see highlight below), you can browse the results of this successful operation. Also, if you double click our.integration.build in the Team Artifacts view, the Builds view will show a new pending build request.
	3.5 Rename Build Definition and Try Again

	__9. Rename the build definition.
	__a. In the Team Artifacts view, right click the our.integration.build build definition and then click Open Build Definition.
	__b. In the build definition editor change the ID to our.integration.build.renamed and then click Save. Do not close the editor as you will want to rename it back soon.

	__10. Move the story to the Implemented state again.
	__a. Switch back to the work item editor and select Reopen from the state dropdown and then click Save. When the debugger surfaces, just click the resume button (). You are not to the interesting bit yet.
	__b. Again in the work item editor, select Complete Development from the same dropdown and click Save again.
	__c. This time, when the debugger surfaces, use the step over button to get to the build method call and then use the step into button. Step through the build method and note the major difference this time. The call to get the build definition returns null, but this time a null pointer exception is not thrown as in lab 2. This time, your new code carefully records and returns the error. Click the debugger’s resume button. Then switch back to your work item editor and note the red at the top, “Unable to request build”. Already you have a bit better information as to what went wrong. Click the red error text to go to the Team Advisor view.
	__d. The Team Advisor view appears with more information on the error. The left side of the view shows the structure of the error condition. Click the nodes on the left to see what information is available. It is clear that you now have much better information as to what went wrong.
	__e. Switch back to the build definition editor and change the ID back to our.integration.build and click Save.
	__f. Switch back to the work item editor and click Save. When the debugger surfaces, you can step into the build method again or just hit resume. Once you do resume, the work item save should complete okay. Return to the work item editor to confirm this. If you go to the Team Advisor view and the Show Failures Only filter is off, you can browse the results of this successful operation. Also, if you refresh the Builds view, you will see another new pending build request.

	__11. Close down the launched client and server.
	__a. Close the RTC Eclipse client where you were working with the Story and build definition.
	__b. Back in the original RTC Eclipse client, go to the Console view and click the Terminate icon.
	__c. If there are many launches it is easy to miss to stop one. This can cause conflicts when starting a new launch. To make sure to get not confused about which launch is still running, use the button Remove All Terminated Launches in the Console or the Debug window and check the Debug window is empty.

	Lab 4 Parameterization
	4.1 Understanding Parameterization

	__1. If your RTC development environment is not open, navigate to C:RTC40DevinstallsTeamConcertjazzclienteclipse in the Windows explorer and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one you used in lab two. If the Plug-in Development perspective is not open, open it now by selecting Window > Open Perspective > Other… > Plug-in Development from the menu bar.
	__2. Browse and load the Lab 4 code.
	__a. In the Pending Changes view, click the Expand to Change sets icon. This will show 2 incoming baselines as shown here.
	__b. Right click the Lab 4 Code baseline under the RTC Extension Workspace node, and then click the Expand Children action. This will reveal all the changes made for lab 4. As you can see there are quite a few more changes in this lab.
	__c. Double click the first changed file, IBuildOnStateChangeDefinitions.java to open a comparison editor. You may want to double click the tab of the opened editor to maximize it. A set of constants have been added to this file. Most of them define elements of the XML schema that will be used to configure your follow up action. You will look a little closer at this soon. Close the comparison editor.
	__d. The next four changes all have to do with adding the schema definition. The first adds the schema folder to the service plug-in. The second adds that folder and its contents to the plug-in’s build properties. The third, adds the schema to the participant’s extension point definition from lab 2. The fourth change adds the schema file itself. You will look at the schema file in some detail later in this lab.
	__e. The final change is once again to the participant implementation itself. Double click the BuildOnStateChangeParticipant.java file to open a comparison editor. You may want to double click the editor’s tab to maximize it.
	__f. Browse the changes and you will notice these key changes. The additional behavior will be discussed in detail after the code is loaded.
	__i. A new nested class has been added, ParsedConfig. It is a simple structure used to pass configuration results between the parsing stages. Remember, no instance state variables in an operation participant!
	__ii. Two new parse methods have been added. These perform a two stage parse on the configuration. Note that doing a two stage parse in this case is not really needed since the second stage has no real performance implications, but the pattern will be explained later when you look at the code in detail.
	__iii. The run method no longer uses hard coded ids.

	__g. Close the comparison editor and then in the Pending Changes view, right click the Lab 4 Code baseline under the RTC Extension Workspace node, and then click the Accept action. This will accept and load the lab 4 delta on top of what you already have loaded from lab 3.

	__3. Understanding the schema.
	__a. Back in the Package Explorer view, expand the src/net.jazz.rtcext.workitem.extensions.common source package and then double click the IBuildOnStateChangeDefinitions.java file.
	__i. The critical additions to this file are the comments that describe the syntax for the participant’s configuration XML and the constant definitions that go with them. Snippets of XML that follow this syntax will be added to the process configuration of a project or team area using the follow up action.
	__ii. The first comment and set of constants defines what how the triggering work item type and state are configured.
	__iii. The second comment and set of constants defines what how the target build is configured.
	__iv. You may want to keep this file open to reference the syntax comments as you examine the other files.

	__b. Back in the Package Explorer view, expand the first level of the net.jazz.rtcext.workitem.extensions.service plug-in project and then double click the plugin.xml file.
	__i. Click on the Extensions tab and expand the nodes under the participant on the left. Note the schema field on the right. Adding this reference to the schema file is the only change to the plugin.xml file for lab 4. You can close the plugin.xml file editor.

	__c. Back in the Package Explorer view, expand the first level of the schema folder inside the net.jazz.rtcext.workitem.extensions.service plug-in project and then double click the buildOnStateChange.xsd file. What editor opens depends on which Eclipse plug-ins you have installed. If you are just using RTC, you will get a text editor. If you have Rational Application Developer (RAD) or the Eclipse Web Tools Platform (WTP) installed along with RTC, you will get a much richer XML schema editor. In either editor, you will see the definition of one element and three types.
	__i. The element definition and first type definition define how these schema elements fit into the overall process definition schema. The first documentation element explains how the element at the top of this section and the base attribute of this type establish where this schema extends the base process definition schema. Note that the process schema is imported and given the XML namespace prefix “process” in earlier elements. Also, as the documentation points out, the required and fixed valued id attribute establishes linkage to your participant. Finally, note that the two nested elements are both required and can occur only once. These are the “trigger” and “build” elements. The details of the structure of these elements are defined in the following type definitions.
	__ii. The second type definition defines the trigger type. It may be helpful to refer to the simple syntax diagram in the IBuildOnStateChangeDefinitions.java file as you look at this type definition. There are also two nested elements defined for this type that are also required and can only occur once. They will contain the work item type and state ids (“changed-workitem-type” and “trigger-state”).
	__iii. The third type definition defines the target build type. It may be helpful to refer to the simple syntax diagram in the IBuildOnStateChangeDefinitions.java file as you look at this type definition. There is one nested element defined for this type that is also required and can only occur once. It will contain the build definition id (“build-definition”).

	__4. Understanding the build on state change participant code changes.
	__a. Back in the Package Explorer view, expand the src/net.jazz.rtcext.workitem.extensions.service source package and then double click the BuildOnStateChangeParticipant.java file.
	__b. First, make sure the breakpoint at the start of the run method is still present and active. If it is not, add the breakpoint again by double clicking in the left margin next to the first line.
	__c. The changes in this class are all about using the configured ids as opposed to the hard coded ids. There is a two stage parse used. As noted in the large comment block in the run method that starts with “Perform the first stage of configuration parsing”, a single stage would be fine in this case since none of the parsing has important performance considerations. However, the pattern can be useful in some common scenarios and needs to be illustrated.
	__d. Just below that comment in the run method, note how the work item type id is now used from the configuration. You will look at the two new parsing methods soon.
	__e. Just after that, note how the work item state id is also used from the configuration.
	__f. Finally, in the run method, note that only if it is known that a build is needed then the second stage of the parse is performed and the build is requested using the build definition id from the configuration and that a null id means no build to run. Also note that the build method has not changed at all.
	__g. The other major change to this class, of course, is the addition of the two parsing methods and the structure used with them to pass the intermediate (after parse 1 but before parse 2) and final parsing results around the participant. The structure is very simple as shown here. The first three fields are filled in by parse 1. Parse 2 uses the cached third field to fill in the final field. Recall that there are two stages since you are pretending that retrieving and/or calculating the build definition id is expensive and it should only be done if required. This is not really true, but illustrates a useful pattern.
	__h. The first parse method looks more complicated than it is. The first thing to know is that the participantConfig parameter passed in via the run method is as described as follows in the run method comment. The required single occurrence “trigger” and “build” elements are children of this element.
	__i. The code in the first parse method loops through the children of the parent configuration element and looks for the “trigger” and “build” elements. When it finds the “trigger” element it parses deeper to get the work item type and state ids. When it finds the “build” element, it simply caches the element in the proper field of the parseConfig parameter for use by the second parse method. As can be seen here, the deeper parse of the “trigger” element follows the same loop and examine pattern on the children of the “trigger” element.
	__j. The second parse method uses a similar pattern but is a bit simpler since it has less to parse and the “build” element has already been cached. Note the check for null at the start of the method to make sure the “build” element really was found by the first parse method.
	__k. You can now close all your open editors and proceed to the next section to configure and again step through the configured follow-up action.
	4.2 Launch the Server for Debug Using Jetty

	__5. Use the existing launch configuration from lab 2.
	__a. From the Debug toolbar dropdown () in the toolbar, select [RTCExt] Build on State Change - Jetty RTC Server.
	__b. As before, the Console view will show a few log messages indicating that the Jetty server is up and running.
	4.3 Launch an RTC Client and Configure the Participant

	__6. Launch the RTC Client.
	__a. From the dropdown menu of the Run toolbar icon, select [RTCExt] RTC Eclipse Client. Note that you are just running the client and not debugging. The same launch configuration can be used for both. You will debug a client in a future lab. If prompted do not clear the runtime workspace. You will probably answer no for this question for the rest of this workshop. You can turn off the prompt by editing the launch configuration.
	__b. The RTC Eclipse client will start up and will connect automatically to the Jetty server you just launched via the repository connection you created in lab 2. The project area will still be connected; however, you do have some more work to do this time. The participant is still added as a follow-up action on work item save, but it has not been configured with the required work item type, state and build definition ids. You need to fix this.

	__7. There are two steps required to fix the build on state change participant that is currently configured for your test project. In this first step, you will make sure the XML generated from adding the participant is associated with the schema you just added.
	__a. In the Team Artifacts view, right click the Test Project 1 project area and then click the Open action in the menu.
	__b. In the project editor that opens, switch to the Process Configuration tab and then on the left, expand the Team Configuration tree then select Operation Behavior. Then, on the right, scroll down to the Work Items > Save Work Item (server) operation and select the Everyone (default) column next to it as shown here.
	__c. Scroll down to find the Follow-up actions section on the right, remove the Build on State Change participant that is already in the list and then add it back in again. This may seem unusual, but there is a good reason for it. If you looked at the XML for the participant before and after doing this, you will notice one key difference, that is, the addition of an xmlns attribute that references the schema. The XML validator for the process configuration uses this information to produce the proper error messages for incorrect or incomplete (your case here) process configuration elements.
	__d. Press Save in the upper right corner of the editor to save this change.

	__8. In this second fix up step, you will actually configure the required work item type, state and build definition ids.
	__a. Switch to the Process Configuration Source tab. Right click in the left margin and from the menu, select Folding > Expand All. You will then see in the right margin and small red rectangle indicating an error. Left click the small red rectangle and the editor will scroll to the line with an error. The error will be further indicated by a red circle with an X in the left margin and a red squiggly underline.
	__b. Hover your mouse over the red circle with the X in the left margin and you will see the following message describing the error. Because you have created a schema and linked it to your participant extension point, the process editor is aware that the configuration of the follow-up action is not complete.
	__c. Since you do not yet have an editor for your XML aspect (next lab), you will need to edit the XML by hand. Here is what the followup-action element and its children should end up looking. You do not need to type all of this or rely on your typing skills to get the syntax just right. You can use Ctrl+Space to use context sensitive code assist. Do note the values of the ids. They are the same as the ones that use to be hard coded in the participant.
	__d. First, change the existing followup-action element to have an explicit end tag. That is, change the /> at the end of the existing tag to just > and then add a </followup-action> end tag on a new line after the existing tag. Also leave a blank line between the two. It will now look like this.
	__e. Click Save at the top right of the project area editor. Your follow-up action is now properly configured. Leave the editor open at this point. You will soon come back here and make a small change.
	4.4 Trigger the Participant

	__9. Find the Story work item used in lab 2 and 3 (it is probably number 7) and then move it out of the Implemented state (via the Reopen action) or create a new story.
	__a. Either of these will cause the breakpoint you set earlier to trigger. If not, re-check the breakpoint is at a valid source code line. The RTC Eclipse client in which you were studying the code will now surface (if asked about switching to the debug perspective, click Yes). If it does not surface, you probably minimized it earlier. In this case, it will be flashing in the Windows taskbar. Click it in the taskbar to surface the debugger.
	__b. Step through the run method using the Step Over button () or F6. When you get to the configParse1 method call, click the Step Into button () or F5 in order to step through the first stage of the parse. Eventually, the check for the target state will fail and the run method will exit without requesting a build. In any case, be sure to click the resume button ().
	__c. Switch back to the RTC Eclipse client where you created the work item. Your work item will be successfully saved. If it shows a failure due to timeout, close the editor without saving, recreate the Story (or reedit the existing Story) and when the breakpoint hits, just use the resume button ().

	__10. Move the Story to the Implemented state.
	__a. At the upper right portion of the work item editor, select Set Implemented or Complete Development (depends on which workflow state the story is currently in) and then click Save.
	__b. Once again the breakpoint is hit and your debugger surfaces (or you need to click it in the Windows taskbar). Step through the code again. If you wish, you can step into the parseConfig1 method but it will do exactly the same thing it did last time. As you step through the run method, the state check will pass this time and a build will be run. When you get to the call to the parseConfig2 method, use the Step Into button (). You can then step through this method for the first time. When you get to the call to the build method, you can step in or not. It has not changed in this lab. Remember to click the resume button () when done stepping.
	__c. Switch back to the RTC Eclipse client where you created the work item. Your work item will be successfully saved. If it shows a failure due to timeout, try saving again and when the breakpoint hits, just use the resume button ().
	__d. If you go to the Team Advisor view and check to make sure the Show Failures Only filter is off and Show Detail Tree is on (see highlight below), you can browse the results of this successful operation. Also, if you double click our.integration.build in the Team Artifacts view, the Builds view will show a new pending build request.
	4.5 Change the Build Id in the Configuration and Try Again

	__11. Return to the Test Project 1 project area editor and change the build id.
	__a. The editor should still be open to the XML you edited earlier. Find the build-definition element and change the id attribute to our.integration.build.bogus and then click Save at the upper right of the project area editor. The configuration will now look like this.

	__12. Move the story to the Implemented state again.
	__a. Switch back to the work item editor and select Reopen from the state dropdown and then click Save. When the debugger surfaces, just click the resume button (). You are not to the interesting bit yet.
	__b. Again in the work item editor, select Complete Development from the same dropdown and click Save again.
	__c. This time, when the debugger surfaces, you can step into the configParse2 method to confirm that the new build definition id is returned or you can simply hit resume and trust that the build definition will not be found as expected. Once you do click the debugger’s resume button, switch back to your work item editor and note the error.
	__d. The Team Advisor view has more information on the error. The left side of the view shows the structure of the error condition. Click the nodes on the left to see what information is available. You can see here that the changed build definition id was used.
	__e. Switch back to the project area editor and change the ID back to our.integration.build and click Save.
	__f. Switch back to the work item editor and click Save. When the debugger surfaces, just click resume and the work item save should complete okay. Return to the work item editor to confirm this. If you go to the Team Advisor view and the Show Failures Only filter is off, you can browse the results of this successful operation. Also, if you refresh the Builds view, you will see another new pending build request.

	__13. Close down the launched client and server.
	__a. Close the RTC Eclipse client where you were working with the Story and project area.
	__b. Back in the original RTC Eclipse client's Console view, click the Terminate icon, remove all terminated launches and check no launch is still running.

	Lab 5 Adding an Aspect Editor
	5.1 Understanding the Aspect Editor

	__1. If your RTC development environment is not open, navigate to C:RTC40DevinstallsTeamConcertjazzclienteclipse in the Windows explorer and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one you used in lab two. If the Plug-in Development perspective is not open, open it now by selecting Window > Open Perspective > Other… > Plug-in Development from the menu bar.
	__2. Browse and load the Lab 5 code.
	__a. In the Pending Changes view, click the Expand to Change sets icon. This will show 1 incoming baseline as shown here.
	__b. Right click the Lab 5 Code change set under the RTC Extension Workspace node, and then click the Expand Children action. This will reveal all the changes made for lab 5. As you can see the full change is the addition of a new plug-in project. The first entry shows a folder addition to the root. That folder contains all the other additions in the following changes. You will next load the code and then go through it in detail.
	__c. In the Pending Changes view, right click the Lab 5 Code baseline under the RTC Extension Workspace node, and then click the Accept action. This will accept and load the new lab 5 plug-in project.
	__d. If you see the following message select Yes

	__3. Understanding the aspect editor plug-in.
	__a. In the Package Explorer view, expand the tree for the new user interface project (net.jazz.rtcext.workitem.extensions.ide.ui) and double click the plugin.xml file. The editor that opens presents information from not only the plugin.xml file but also the build.properties and META-INF/MANIFEST.MF files. As before, the content reflects standard Eclipse plug-in practices. Note on the Overview page that there is one significant difference, the addition of an activator class. More on that later when you take a look at that class. Also note on the Dependencies page that this plug-in depends on, among other things, the common plug-in but not the service plug-in. The common plug-in, as the name implies, is deployed on both the client and server. The service, just on the server and the aspect editor, just on the client.
	__b. Once again the most interesting part is on the Extensions tab. On the left side, you see an instance of the com.ibm.team.process.ide.ui.processAspectEditorFactories extension point. All client side aspect editor factories are defined using this extension point. An aspect editor factory is a class that knows how to construct an aspect editor for one or more process XML aspects. Note that the tree is a structural editor for the xml that comprises the definition. The text in parenthesis on each line is the name of the xml element for that line. The raw xml can be seen on the plugin.xml tab of the editor.
	__c. Select the (factory) node in the tree on the left and the right side of the editor will look like the following. The aspectId is set to the same value as the participant’s id in order to create a link from adding the participant to the process and knowing that this factory needs to be invoked to get the aspect editor. The class is set to the factory class. More on that class later when you take a look at it.

	__4. Understanding the aspect editor code.
	__a. Back in the Package Explorer view, expand the src/net.jazz.rtcext.workitem.extensions.ide.ui source package and then double click the WorkitemExtensionsPlugin.java file. This is the plug-in’s activator class mentioned earlier. This is a very simple class as explained by the class comment.
	__b. Back in the Package Explorer view, double click the AspectEditorFactory.java file. This is the aspect editor factory class mentioned earlier.
	__i. This is a very simple class as explained by the class comment. Note that it implements the IProcessAspectEditorFactory interface as required by the process editor framework.
	__ii. It then implements the one method in the interface in a rather straight forward manner. An instance of the BuildOnStateChangeAspectEditor class is returned. You will look at that class real soon.

	__c. Back in the Package Explorer view, double click the BuildOnStateChangeModel.java file. The class provides a simple get and set interface for the ids. The class encapsulates reading and writing the XML aspect. There are a few special things about this class as you will see next.
	__i. The get methods are straight forward; however, the set methods are a bit atypical. For example, the set method for the work item type id. Note that the id is normalized (trimmed and never null) and that true is returned if the value actually changed.
	__ii. The readFrom method should look familiar. It is basically the same as the parse methods that were added to the participant implementation in the last lab. A root object, in this case an IMemento, is passed in and the descendent nodes are searched for the values that are then set into this model. Notice that this method uses the exact same constants from the common plug-in as the participant for the element and attribute names. Note that the root memento comes from the process framework via your aspect editor and that the framework handles the physical reading and parsing of the XML.
	__iii. The saveTo method is the readFrom method’s opposite. All the elements and attributes are always written (they are all required and they all can only appear once). The ids are never null; however, they may be empty strings. This leads to a rather straight forward implementation where descendants of the passed memento are added in a fixed manner. Note that the root memento comes from the process framework via your aspect editor and that the framework handles the physical writing of the XML.

	__d. Back in the Package Explorer view, double click the BuildOnStateChangeAspectEditor.java file. The class provides the actual aspect editor. It is instantiated by the factory and uses the other classes to get its work done. This class is easily the most complicated class in this workshop. You will probably need to debug through parts of it a few times to fully understand it. Here is an overview of each method and type.
	__i. The class extends the OperationDetailsAspectEditor abstract class.
	__ii. There are four inherited abstract methods that must be implemented.

	__e. As shown in the implementation of the createControl method, there are three basic steps: create the controls, establish the layout data and initialize the user interface values. The implementation of the createControl method looks rather straight forward; however, the methods that are called from here are rather complex. Let’s look at them and all the other methods and nested types grouped by purpose.
	__i. The first group is used to create the user interface controls. They include createTriggerControls and createBuildControls. These two methods do exactly what their names imply. In addition, they add listeners to the comboboxes to detect changes in selection of the ids.
	__ii. The second group is for initialization of the user interface. They include initUI and initStates.
	__iii. The third group is used from the combobox selection changed listeners (and a couple other locations) to validate user selections.
	__iv. The forth group includes the getModel, restoreState and saveState implementations. The getModel method is a straight forward lazy evaluation method for the model instance. The other two pass through to the model as described earlier.
	__v. The fifth group includes the getWorkItemCommon and getWorkflowManager methods. These two methods obtain and cache the service objects used to obtain the list of work item types and work item states configured for the project area in which the aspect is being configured. These services are used more than once and are therefore cached. The service used to get the build definitions is only use once per aspect editor instance so it is not cached.
	__vi. The sixth group includes getWorkItemTypes, getStatesForTypeCategory and their related nested types: WorkItemType and WorkItemState.
	__vii. The seventh and final group includes the getBuildDefinitions method and the BuildDef nested type.

	__f. Next there is the issue of setting breakpoints for your upcoming debug session(s). Recommended locations include the beginning of the createContol method and the beginning of the selectionChanged method of each selection listener attached to a combobox (there are 3 of them). Also, the restoreState and saveState methods. Stepping (with a lot of step into) from those points will hit virtually all the code in these classes. You can also clear the breakpoints in the server side participant if you wish. That code has not changed at all for this lab.
	__g. You can now close all your open editors and proceed to the next section to try out your new aspect editor.
	5.2 Launch the Server for Debug Using Jetty

	__5. Use the existing launch configuration from the prior labs.
	__a. From the Debug toolbar dropdown () in the toolbar, select [RTCExt] Build on State Change - Jetty RTC Server.
	__b. As before, the Console view will show a few log messages indicating that the Jetty server is up and running.
	5.3 Launch an RTC Client and Configure the Participant

	__6. Create a new launch configuration for the RTC Client plus your aspect editor.
	__a. From the Debug toolbar dropdown, select Debug Configurations…
	__b. In the Debug Configurations dialog, expand the Eclipse2 Application tree and right click the [RTCExt] RTC Eclipse Client configuration and then from the popup menu, select Duplicate. Note that you are not changing the existing launch but creating a copy of it. You should keep the original launch around unchanged to use as a known working base from which to create other launch configurations.
	__c. Change the Name of the new configuration to [RTCExt] Build on State Change - RTC Eclipse Client.
	__d. Add the common and ui bundles to the configuration. Click on the Bundle link and in the Add Bundle dialog, type rtcext in the filter field, select the common plug-in and then click OK. Repeat, but select the ui plug-in this time. Your launch configuration should look like this.
	__e. Click Apply to save your changes but do not close the dialog.

	__7. Launch the RTC client.
	__a. Click Debug at the bottom of the Debug Configurations dialog. If prompted do not clear the runtime workspace. You will probably answer no for this question for the rest of this workshop. You can turn off the prompt by editing the launch configuration.
	__b. The client will launch with the aspect editor included. It will connect automatically to the Jetty server you just launched via the repository connection you created in lab 2. The project area will still be connected and the participant is fully configured from lab 4.
	__c. The next time you want to debug this server configuration, you will be able to click a shortcut to it on the dropdown of the Debug toolbar icon. You will not need to open the Debug Configurations dialog.

	__8. Try out the new aspect editor.
	__a. In the Team Artifacts view, right click the Test Project 1 project area and then click the Open action in the menu.
	__b. In the project editor that opens, switch to the Process Configuration tab and then on the left, expand the Team Configuration tree then select Operation Behavior. Then, on the right, scroll down to the Work Items > Save Work Item (server) operation and select the Everyone (default) column next to it as shown here.
	__c. Scroll down to find the Follow-up actions section on the right and select the Build on State Change entry.
	__i. If you set it, your breakpoint in the restoreState method will trigger. Step into and through the two methods called from here.
	__ii. Hit the debugger’s resume button and your breakpoint in createControl will trigger. Step into and through the methods called from here.
	__iii. After you hit resume from createControl or one of its called methods, the breakpoints in the selection changes listeners will start to trigger because of the initial setting of the combobox selected element during initialization.
	__iv. Once you have hit resume after all the selection change listener breakpoints (each may trigger twice), switch back to the launched RTC Eclipse client and see the aspect editor in action.

	__d. The selected values in the comboxes should look familiar. In fact, even better since the actual work item type and state names and not just the ids are shown. Note that the id is all that is put into the process XML.
	__e. Select a different work item type and see how the list of states changes in the state id combobox. If the type you chose has a state with the same name, Implemented, the state setting will be recognized as valid even if the id is different. The state id in the model will be updated if required. However, if you choose a work item type that does not have an Implemented state, the state will be flagged as an error. Hover over the little red error icon to see the error message. You may need to try a few times to find a case where the state is still valid after changing the type (hint: Defect and Task both have an “In Progress” state). Also note how the project area editor is marked dirty after your first change and the Save button is enabled. Also note how annoying having all those breakpoints set can be.  You may want to disable some of them.
	__f. When done, click Save at the top right of the project editor and your breakpoint in the saveState method will trigger. Step into and through the called methods if you wish and then return to the launched RTC Eclipse client.
	__g. Leave the editor open at this point. You will soon come back here and make a change.
	5.4 Trigger the Participant

	__9. Depending on how you left the follow-up action configured, you may need to alter these instructions to match your work item type and state.
	__10. Find the Story work item used in labs 2 through 4 and then move it out of the Implemented state (via the Reopen action) or create a new story.
	__a. Either of these will cause the breakpoint you set earlier to trigger (unless you cleared it). The RTC Eclipse client in which you were studying the code will now surface (if asked about switching to the debug perspective, click Yes). If it does not surface, you probably minimized it earlier. In this case, it will be flashing in the Windows taskbar. Click it in the taskbar to surface the debugger.
	__b. Simply resume execution since this code has not changed ().
	__c. Switch back to the RTC Eclipse client where you created the work item. Your work item will be successfully saved. If it shows a failure due to timeout, close the editor without saving, recreate the Story (or reedit the existing Story) and when the breakpoint hits, just use the resume button ().

	__11. Move the Story to the Implemented state (or your different type to the trigger state).
	__a. At the upper right portion of the work item editor, select Set Implemented or Complete Development (depends on which workflow state the story is currently in) and then click Save.
	__b. Once again the breakpoint is hit (unless you cleared it) and your debugger surfaces. Go ahead and resume again.
	__c. Switch back to the RTC Eclipse client where you created the work item. Your work item will be successfully saved. If it shows a failure due to timeout, try saving again and when the breakpoint hits, just use the resume button ().
	__d. If you go to the Team Advisor view and check to make sure the Show Failures Only filter is off and Show Detail Tree is on (see highlight below), you can browse the results of this successful operation. Also, if you double click our.integration.build in the Team Artifacts view, the Builds view will show a new pending build request.
	5.5 Add another Instance of the Follow-up Action and Try Again

	__12. Return to the Test Project 1 project area editor and add another instance.
	__a. The editor should still be open to where you were before. Next to the Follow-up actions list, click Add… and in the Add Follow-up Actions dialog, select Build on State Change from the list and click OK. Only the restoreState and createControl breakpoints will trigger this time. The process configuration editor will now look like this. Note the errors. None of these can be empty.
	__b. Select a work item and state that are different from the ones configured for the first instance. Select the one and only build definition. If you wish, you can create a new build definition. If you do create a new build definition, you will not see it until a new instance of the aspect editor is created. A new instance is created each time you select a participant in the Follow-up actions list.

	__13. Now create a new work item of the type you selected and move to the selected state. Once you do, a build will be submitted. It will still work for the original settings too.
	__14. Close down the launched client and server.
	__a. Close the RTC Eclipse client where you were working with the work items and project area.
	__b. Back in the original RTC Eclipse client, go to the Console view and click the Terminate icon.

	Lab 6 Deploying the Server Side
	6.1 Creating a Server Side Feature

	__15. If your RTC development environment is not open, navigate to C:RTC40DevinstallsTeamConcertjazzclienteclipse in the Windows explorer and double click eclipse.exe. If prompted to select an Eclipse workspace, select the same one you used in lab two. If the Plug-in Development perspective is not open, open it now by selecting Window > Open Perspective > Other… > Plug-in Development from the menu bar.
	__16. Create the server side feature.
	__a. From the menu bar, select File > New > Project… then in the New Project wizard, type feature in the filter field, select Feature Project from the list and then click Next.
	__b. On the second page of the wizard type net.jazz.rtcext.workitem.extensions.server.feature into the Project name field. As you type, the Feature ID is set to a reasonable value but the Feature Name should be reset to: Work Item Extensions Server Feature. You can set the Feature Provider to yourself or your company, if you wish. It is not required. Click Next.
	__c. On the final page of the wizard select the common and service plug-ins and then click Finish.
	__d. Your new feature project appears in the Package Explorer view and an editor opens on the feature.xml file. On the Overview tab, make sure the Version is set to 1.0.0.qualifier. This is the same Eclipse best practice you used for the plug-ins.
	__e. Still in the editor, switch to the Information tab, select the Feature Description sub-tab and enter a Text description as shown here. If you wish you can look at other information that can be added, such as a copyright and license information.
	__f. Switch to the Dependencies tab and click Compute.
	__g. The dependencies list is computed as shown here. The dependencies are expressed in terms of plug-ins; however, for Jazz server side provisioning, you need to use features. Using the compute button was helpful because having the list of plug-ins makes it straight forward to figure out the list of features you really want. You will need four server side features in the dependency list: one each for repository, process, workitem and build. The server side features on which you will generally depend (the ones that provide services that you will use from these and other plug-ins) follow two consistent naming patterns: com.ibm.team.component.server.jfs.feature and com.ibm.team.component.server.rtc.feature Click Add Feature…
	__h. In the Feature Selection dialog type com.ibm.team.*.server.jfs.feature into the filter field, select the two features shown here (com.ibm.team.process.server.jfs.feature and com.ibm.team.repository.server.jfs.feature) and then click OK.
	__i. Click Add Feature... again, but this time in the Feature Selection dialog type com.ibm.team.*.server.rtc.feature into the filter field, select these two features (com.ibm.team.build.server.rtc.feature and com.ibm.team.workitem.server.rtc.feature) and then click OK.
	__j. The dependency list will now contain the four features (red arrows) in addition to plug-ins it had before (selected). Select all the plug-ins as shown here, right click one of them and then select Delete from the menu.
	__k. The list will now look like this. Type Ctrl+S to save the feature.xml file. You can now close the editor.
	6.2 Create the Server Update Site

	__17. Create the update site.
	__a. From the menu bar, select File > New > Project… then in the New Project wizard, type site in the filter field, select Update Site Project from the list and then click Next.
	__b. On the second page of the wizard type net.jazz.rtcext.workitem.extensions.server.updatesite into the Project name field. Click Finish.
	__c. Your new update site project appears in the Package Explorer view and an editor opens on the site.xml file. In the editor, remain on Site Map tab and click Add Feature.
	__d. In the Feature Selection dialog, type *rtcext into the filter, select the feature you created in the last section and then click OK. Back on the site.xml editor type Ctrl+S to save the file.

	__18. Share the new projects to your repository workspace.
	__a. In the Package Explorer view, select the feature and update site projects as shown here. Then, right click one of them and from the menu, select Team > Share Project…
	__b. In the Share Project wizard, select Jazz Source Control then click Next.
	__c. On the second page of the wizard, select the RTC Extension Workspace (as highlighted with a red box) and click New Component. In the New Component dialog, enter RTC Extension Deploy as the component name and click OK. Finally, back to the wizard, make sure the new component is selected (red arrow) and then click Next.
	__d. On the third page of the wizard, confirm that the feature and update site projects are selected and then click Finish.
	__e. The Pending Changes view will show your outgoing component addition with its newly shared projects. You will deliver them later.

	__19. Build the update site.
	__a. Return to the site.xml editor and click Build All.
	__b. The Package Explorer and Pending Changes views will show several new files in your update site project. In the Pending Changes view they will show up as Unresolved. Select the four entries in the root of the update site as shown here (note that site.xml is not selected). Then, right click one of them and from the menu select Ignore. When prompted to confirm, click Yes. A dialog that explains how to un-ignore the resources later may appear. Click OK if it shows up. These files are created by the update site build and do not need to be stored under source control. This action along with the next sub-step will make sure you do not accidentally check them at another time.
	__c. The Pending Changes view will now show a new .jazzignore file as Unresolved. Go ahead and check it in now by right clicking the file and then selecting Check-in > Share projects from the menu (“Share projects” is the name of the change set created when you shared the two projects into the RTC Extension Deploy component). Note that site.xml is not selected.
	__d. If you now dig into the site.xml file and into the jars in the features and plugins folders inside the update site project, you will notice that all the update site build has converted all the “qualifier” segments of the version numbers to date and time stamps. This will make it easier to update your code in a test system during development. One final note. Generally, if you need to build the update site again, you will first want to delete the jars from the update site project’s features and plugins folders. The build will generate new jars with different date and time stamps and leave the old ones there too.
	6.3 Deploy the Server Side Feature

	__20. Shutdown the RTC server and copy the update site into place.
	__a. In the Windows Explorer, navigate to C:RTC40DevinstallsJazzTeamServerserver and run the server.shutdown.bat file.
	__b. In the Windows Explorer, navigate to C:RTC40DevinstallsJazzTeamServerserverconfccmsites and create a new folder to contain the extension. For this lab, call it buildOnState-update-site as shown here. Be sure you are in the ccm application configuration and not the jts application configuration.
	__c. In the Package Explorer view, select the site.xml file and the features and plugins folders as shown here. Then right click one of them and select Copy from the menu.
	__d. Back in the Windows Explorer, select the buildOnState-update-site folder and paste the extension update site into it. Here is the result.

	__21. Create the provisioning ini file.
	__a. In the Windows Explorer, navigate to C:RTC40DevinstallsJazzTeamServerserverconfccmprovision_profiles and create a new file in that folder named buildOnState.ini.
	__b. Open the new ini file with Notepad and enter these two lines:
	__c. Save the file and close the editor. When you restart the RTC server, it will read this new provisioning ini file and find the path to the update site and the id of the new feature to load.

	__22. Start the RTC server.
	__a. In the Windows Explorer, navigate to C:RTC40DevinstallsJazzTeamServerserver and run the server.startup.bat file.
	__b. If you open your browser to this URL https://localhost:9443/ccm/admin#action=com.ibm.team.repository.admin.componentStatus , login as myadmin / myadmin. Use the browser text search to search for rtcext or go to the end of the page. You will see the net.jazz.rtcext.workitem.extensions component is running. It does not show any services since it just contains the operation participant.
	6.4 Deploy the Client Plug-ins

	__23. Export deployable plug-ins to the drop-ins folder.
	__a. In the Package Explorer view, select the common and ui plug-ins as shown here and then right click one of them and select Export…
	__b. In the Export wizard, type fragments in the filter, select Deployable plug-ins and fragments from the list and then click Next.
	__c. On the second page of the wizard, make sure the common and ui plug-ins are selected and specify the RTC Eclipse client’s dropins folder as the destination as shown here. You may want to use the Browse… button. Do NOT hit Finish yet, but rather select the Options tab toward the bottom and proceed to the next step.
	__d. On the Options tab, make sure the checkboxes are selected as shown here. Leave the default value for the qualifier alone (the wizard will fill in the appropriate value when you check the box). Now click Finish.

	__24. Restart the RTC Eclipse client.
	__a. Close your RTC Eclipse client.
	__b. In Windows Explorer, navigate to C:RTC40DevinstallsTeamConcertjazzclienteclipse and double click eclipse.exe.
	6.5 Test the Deployed Participant

	__25. Create a dummy build definition. You just need a simple build definition to test the participant. The build does not need to run properly. The participant just needs to make requests for it.
	__a. In the Team Artifacts view, expand the RTC Extension Workshop node, right click Builds and then click New Build Definition…
	__b. In the New Build Definition wizard, make sure Create a new build is selected and then click Next. On the second page of the wizard, change the ID to our.integration.build, make sure Ant - Jazz Build Engine is selected and then click Finish.
	__c. In the build definition editor that opens, switch to the Ant tab, and enter a path for the Build file and then click Save. You may now close the editor. Note that the build file does not exist and any path will work for the current purpose. If you wish, you can use the path shown, ./buildLocation/build.xml. Also note that a default build engine is created at this time and is associated with your new build definition. This actually is important. If there was no build engine for your build definition, the participant’s request for a build would fail.

	__26. Add the follow-up action to the project area.
	__a. In the Team Artifacts view, right click the RTC Extension Workshop project area and select Open from the menu.
	__b. In the project area editor, switch to the Process Configuration tab and then on the left, expand the Team Configuration tree then select Operation Behavior. Then, on the right, scroll down to the Work Items > Save Work Item (server) operation and select the Everyone (default) column next to it as shown here.
	__c. Scroll down to find the Follow-up actions section on the right. Initially, the list will be empty. Click Add… then on the Add Follow-up Actions dialog, select Build on State Change (your new participant!) and click OK. Build on State Change will now be in the list and when it is selected, the window will look like the following image. The aspect editor is shown but needs to be filled out.
	__d. Fill in the Work Item Trigger as shown here. You may, of course, choose different values for the work item type and state, but then you will need to adjust the following steps accordingly.
	__e. Click Save at the top right of the editor. You may now close the project area editor and any other editors that may still be open.

	__27. Create a Story and move it to the target state.
	__a. Click the dropdown menu arrow next to the New Work Item toolbar icon and then click Story.
	__b. In the new work item editor that opens, set the two required fields and shown here and then click Save in the upper right corner.
	__c. At the upper right portion of the work item editor, select Set Implemented and then click Save.
	__d. At this point, the participant has run twice (once on each save). The first one did not cause a build to be submitted, but the second did. In the Team Artifacts view, expand the Builds node as shown here and double click the our.integration.build build definition.
	__e. The Builds view opens showing your submitted build.
	6.6 Complete Development

	__28. Deliver the new deploy component.
	__a. If you wish, go to the Pending Changes view and now that you have tested the feature and update site, check-in any adjustments you have made since sharing and then deliver the added component and its content to the stream.

	__29. The reset URL.
	__a. Note that if you update a feature that has already been provisioned into a Jazz server and the server does not pickup the update but seems to still be running the prior version, there is a URL that can be used to force reprovisioning. For the ccm application you have been using in this lab, the URL would be this (https://localhost:9443/ccm/admin?internal#action=com.ibm.team.repository.admin.serverReset). A page will appear with a Request Server Reset button. Click that button and the next time the server is restarted, all the plug-ins will be reprovisioned.

	Appendix A Notices
	Appendix B Trademarks and copyrights

