
IBM® Rational® Jazz®
Collaborative Lifecycle
Management

Process Enactment
Workshop for RTC
version 1.4

Lab Exercises

IBM Software

Contents

LAB 1 INSTALL THE ENVIRONMENT..3

1.1 INSTALL OVERVIEW...4

1.2 WEB INSTALL...6

1.2.1 DOWNLOAD FILES..6

1.2.2 INSTALL THE SERVER ...7

1.2.3 INSTALL THE CLIENT..10

1.3 INSTALLATION MANAGER INSTALL..11

1.3.1 DOWNLOAD FILES..11

1.3.2 INSTALL THE SERVER..12

1.3.3 INSTALL THE CLIENT..13

1.4 PLAIN ZIP INSTALL..15

1.4.1 DOWNLOAD FILES..15

1.4.2 INSTALL THE SERVER..15

1.4.3 INSTALL THE CLIENT..15

1.5 SUMMARY..17

1.6 APPENDIX A – INSTALL TIPS..18

LAB 2 SET UP THE ENVIRONMENT..20

2.1 SET UP THE SERVER ENVIRONMENT...21

2.1.1 CREATE AN ALIAS FOR THE HOST NAME ..21

2.1.2 CONFIGURE TOMCAT PORTS..23

2.1.3 SERVER LANGUAGE..24

2.1.4 WEB UI LANGUAGE..25

2.2 SET UP THE RTC SERVER...26

2.3 SET UP THE RTC ECLIPSE CLIENT SOFTWARE...28

2.3.1 ECLIPSE CLIENT LANGUAGE..28

2.3.2 ECLIPSE CLIENT USER PREFERENCES..28

2.4 CREATE A TEST PROJECT...31

2.5 SUMMARY..33

2.6 APPENDIX A – ADDITIONAL CONSIDERATIONS..34

LAB 3 CONFIGURING WORK ITEMS...35

3.1 CUSTOMIZE THE PROCESS IN RTC...36

3.1.1 UNDERSTAND THE NEW NEEDS...36

3.1.2 CREATE A NEW WORK ITEM TYPE WITH CUSTOM ATTRIBUTES..39

3.1.3 CREATE A WORKFLOW...44

3.1.4 CUSTOMIZE THE PRESENTATION FOR THE WORK ITEM TYPE..48

3.1.5 CONFIGURE PERMISSIONS ..53

3.2 GATHER THE PROCESS CHANGES...55

3.3 SUMMARY..58

LAB 4 WORK ITEM CUSTOMIZATION...59

4.1 DEFAULT VALUE PROVIDER..61

4.1.1 DEFAULT VALUES FOR ATTRIBUTES OF TYPE CONTRIBUTOR...61

4.1.2 ROLE BASED ENUMERATION DEFAULT..67

4.1.3 OPTIONAL: REVIEW THE OTHER AVAILABLE DEFAULT VALUE PROVIDERS....................73

CLM 2012 Process Enactment Workshop Page 1

IBM Software

4.1.4 SUMMARY..74

4.2 VALUE SETS..76

4.2.1 DEPENDENT ENUMERATIONS...76

4.2.2 HTTP FILTERED VALUE SET..82

4.2.3 REFINE THE HTTP FILTERED VALUE SET..93

4.2.4 ADDITIONAL INFORMATION FOR HTTP BASED FILTERED VALUE PROVIDERS.................97

4.2.5 ROLE BASED USER LIST...98

4.2.6 SUMMARY..102

4.3 VALIDATORS..103

4.3.1 SUMMARY..112

4.4 SUMMARY..113

LAB 5 WORK ITEM CUSTOMIZATION WITH JAVASCRIPT..114

5.1 INTRODUCTION TO JAVASCRIPT BASED ATTRIBUTE CUSTOMIZATION...115

5.1.1 JAVASCRIPT BASED ATTRIBUTE CUSTOMIZATION CAPABILITIES AND LIMITATIONS. . .117

5.1.2 CHALLENGES DEVELOPING JAVASCRIPT BASED ATTRIBUTE CUSTOMIZATION...........119

5.1.3 ENABLE JAVASCRIPT...120

5.1.4 OPTIONAL: INSTALL THE WEB, XML, AND JAVA EE DEVELOPMENT TOOLS...................121

5.2 SCRIPT BASED CALCULATED VALUE..124

5.2.1 TOTAL COST CALCULATED VALUE..124

5.2.2 “ATTRIBUTEVALUEANALYZER” CALCULATED VALUE PROVIDER....................................145

5.2.3 SUMMARY..153

5.3 SCRIPT BASED CONDITIONS..154

5.4 SCRIPT BASED VALIDATIONS...167

5.5 SCRIPT BASED VALUE SET...175

5.6 CALCULATED VALUE TO VISUALIZE THE STATE OF THE TECHNOLOGY REVIEW..181

5.7 SUMMARY..190

5.8 SOLUTIONS...191

5.9 APPENDIX A - SCRIPT TROUBLESHOOTING...192

5.10 APPENDIX B – SCRIPT DEBUGGING..193

5.10.1 SCRIPT DEBUGGING EXAMPLE WITH CHROME..193

5.10.2 SCRIPT DEBUGGING EXAMPLE WITH FIREBUG..193

5.11 APPENDIX C – SCRIPTED HTTP VALUE SET PROVIDER...198

5.12 APPENDIX D – CHANGES IN 4.0.3 ATTRIBUTE CUSTOMIZATION SCRIPT BASED EDITOR.....................................204

APPENDIX A GLOSSARY... 207

APPENDIX B NOTICES... 209

APPENDIX C TRADEMARKS AND COPYRIGHTS..211

CLM 2012 Administration Workshop Page 2

IBM Software

Lab 1 Install the Environment

In this lab you will install your environment. This involves installing client and server software.

Process development should occur in a separate Rational Team Concert (RTC) web application from the
regular production server. RTC projects can't be deleted at this time, so developing them in a separate
RTC application keeps the production environment cleaner. It's also good to develop and test processes
in a separate RTC application so you don't have to worry about accidentally changing settings in the
version of RTC that everyone else is using. You'll be free to experiment and create without impacting
other team members.

You will install the following software in this lab:

• The server: RTC with JTS, used for process development.

For the purposes of the workshop, these do not represent the real-life JTS and RTC web
applications your organization uses to manage projects, work items, etc. They are solely used for
process development.

• An RTC client (Eclipse).

When you're through with this lab, you will have learned:

• How to install all the software

Why a separate server for process development?

There are several reasons for this.

It is currently not possible to delete projects on an RTC
server. You can only archive projects.

During process development you will experiment with
several potential solution approaches. Since some
decisions can not be changed after they have been
used, for example work item attribute types, you might
have to create several projects until you finally found the
right implementation.

On the production server you might not have all the
permissions.

Therefore the separate process development server
allows for experimenting and try different solution
approaches without impacting the work on the production
server.

CLM 2012 Administration Workshop Page 3

IBM Software

1.1 Install Overview

The description below suggests a special folder for the test system. You should use the recommended
location. If this is not possible, replace paths in the instructions pointing to that location with your install
path.

If you want to set up Rational Team Concert, you have basically three options to do this.

1) You can use the Web Installer to download and install all the required software

2) You can download IBM Installation Manager repositories and use them to install the required
software

3) You can download the software as “Plain ZIP Install”, using compressed ZIP files; and
decompress the files to install all the required software

Which option should be used when?

Use The Plain ZIP Install

The Plain ZIP install is the easiest option available for
this workshop as the other CLM tools are not needed.

Use the Web Install if you

• Want to do a one time only install

• Have a reliable network connection with a high bandwidth

• Want to install more than Just Rational Team Concert

• Have not yet any IBM Installation Manager or ZIP install files available

Use the Installation Manager Repository Install if you

• Want to install Rational Team Concert or any other CLM tool like Rational Quality Manager
multiple times

• Want to do a distributed install on separate servers

• Have to provide the tools to many users

• Have issues with your internet connection (use a download manager to download the
repositories)

Use the Plain ZIP Install if you

• Only need to install RTC, the Eclipse client or the Buildsystem Toolkit – the other applications are
not available as ZIP only install

CLM 2012 Administration Workshop Page 4

IBM Software

• Want small footprint

The following sections describe each option.

Installation instructions and versions

The installation instructions in this lab describe the basic
steps with the purpose of serving as guideline.
Installation in some environments may require additional
or different steps (e.g. RTC client integration with other
tools).

The described installation procedures will also use CLM
version 4.0.0.1, which was the version used at the time
this workshop was first developed. However, as general
rule, you will download and install the latest available
product released version.

There might be small differences in the screen shots and
small differences in the process for newer versions of
RTC. If in doubt check the documentation of your version
of RTC.

CLM 2012 Administration Workshop Page 5

IBM Software

1.2 Web Install

1.2.1 Download Files

__1. Create a directory in the root folder of your local disk called C:\JSWorkshops. Create a sub-
directory named Downloads. You will download all files into this directory.

__2. Download and install Firefox http://www.mozilla.org/en-US/firefox/organizations/all.html

__a. Select the Firefox > Options and change the following settings:

__i. General tab

__a. Save files to C:\JSWorkshops\Downloads

__ii. Content tab

__a. Turn off “pop-up blocking”. CLM applications sometimes use pop-ups for
logging in.

__iii. Advanced

__a. Select Never check for updates. As of this writing, Firefox 10 is the
version supported by CLM, so you should keep it at that level.

__3. Download CLM 4.0.x

__a. Go to the All Downloads tab on the CLM 4.0.0.1 download page (or the page for the
latest version of CLM).

__4. In the Web Installers section, download the zip file for Windows x86 (or the platform you're
using), into C:\JSWorkshops\Downloads folder

CLM 2012 Administration Workshop Page 6

https://jazz.net/downloads/rational-team-concert/releases/4.0.0.1?p=allDownloads
https://www.mozilla.org/en-US/firefox/organizations/all.html

IBM Software

1.2.2 Install the Server

__1. Install the JTS and RTC applications.

__a. Use 7Zip (or the application of your choice) to unzip the downloaded CLM web installer
into a sub-directory of the Downloads folder.

__b. In the chosen sub-directory execute launchpad.exe.

__c. In the first window, select the link Install the Jazz Team Server and Applications. Then
select Express Install.

Why Express Install?

We are doing a simple installation with all the products
collocated in the same server using Tomcat and Derby.
You can select Custom installation for flexible installation
options of the applications.

__d. In the installation window, select the link Jazz Team Server with Required Base Keys,
including Trials, and CCM, QM and RM Applications.

__e. Log in to Jazz.net using your regular Jazz.net registered user credentials if asked.

CLM 2012 Administration Workshop Page 7

http://www.7-zip.org/

IBM Software

__f. In the first window, select the following packages: “Installation Manager”, “Change and
Configuration Management”, “Jazz Team Server” and “license keys”.

Why that packages?

In this lab we are focused on Rational Team Concert
installation, and those are the required packages for
installing RTC server. You can optionally install Rational
Quality Manager and Rational Requirements Composer
selecting their installation packages as well.

__g. Select Next.

Windows 7 Supported OS Warning

If you are running under Windows 7 you may see a
Supported Operating System warning. You can ignore
this and select Next.

__h. Read the license agreement and if you accept, select Next.

__i. If you installation manager the first time on this machine, change the Shared Resources
Directory to C:\JSWorkshops\IBM\IBMIMShared, and change the Installation Manager
directory to C:\JSWorkshops\IBM\Installation Manager\eclipse. Select Next.

CLM 2012 Administration Workshop Page 8

IBM Software

__j. Change the installation directory to C:\JSWprkshops\IBM\JazzTeamServer. If you're
running on a 64-bit system, make sure the Architecture Selection is 64-bit. Select Next.

__k. Select any additional languages, then select Next.

__l. Verify that you are installing the correct applications, then select Next.

__m. Make sure Install Tomcat 7 Is selected under Web Application Location. Select Next.

__n. Make sure Use default 3.x/4.x application context roots is selected under Context
Root Options. Select Next.

__o. Verify the installation options, then select Install.

__p. On the final page displayed when installation is complete, select None, then Finish.

CLM 2012 Administration Workshop Page 9

IBM Software

1.2.3 Install the Client

__1. Install the Rational Team Concert Eclipse client

__a. Return to the Launchpad window (restart launchpad.exe if it is not open) and under
Install Optional Tools select the link for Rational Team Concert – Client for Eclipse
IDE. Installation Manager will launch.

__b. Log in to Jazz.net using your regular Jazz.net registered user credentials if asked.

__c. On the first screen, select Rational Team Concert – Client for Eclipse. Make sure
Version 4.0.0.1 is also checked (or the latest version), then select Next.

__d. Read the license agreement and if you accept it, select Next.

__e. Change the installation directory to C: \ JSWorkshops \ IBM \ TeamConcert .

__f. Under Architecture Selection, select 64-bit. Select Next.

__g. Do NOT check Extend an existing Eclipse. Select Next.

__h. Select any additional languages, then select Next.

__i. In Select the features to install, make sure Rational Team Concert – Client for
Eclipse IDE 4.0.0.1 is selected. Do NOT select Sametime Integration Update Site.
Select Next.

__j. Under Common Configurations, select Access help from the Web. Select Next.

__k. On the review page, make sure the installation directories and packages are correct, and
select Install.

__2. After the installation completes, close the Launchpad.

CLM 2012 Administration Workshop Page 10

file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert

IBM Software

1.3 Installation Manager Install

1.3.1 Download Files

__1. Go to the All Downloads tab on the CLM 4.0.0.1 download page (or the page for the latest
version of CLM).

__a. Scroll Down to the section “Installation Manager Repositories”

__b. If it is not already installed, download IBM “Installation Manager” to
C:\JSWorkhsops\Downloads and install it

__i. Use C:\JSWorkshops\IBM\Installation Manager as install location

__ii. Use C:\JSWorkshops\IBM\IBMIMShared as shared location if asked

__c. Download the “Jazz Team Server and CCM, QM, and RM Applications with Trial licenses
for Rational Team Concert, Rational Quality Manager, and Rational Requirements
Composer” Installation Manager Repository to C:\JSWorkshops\Downloads

__i. Use 7Zip (or the application of your choice), to decompress the downloaded
repository into a sub folder.

__d. Download the “Client for Eclipse IDE” Installation Manager Repository to
C:\JSWorkshops\Downloads

__i. Use 7Zip (or the application of your choice), to decompress the downloaded
repository into a sub folder.

__2. Start Installation Manager and use the File > Preferences menu and add the repositories:

__a. Navigate to the Repositories menu. Repeat the following steps two times, for two
downloaded repositories:

__i. Select Add Repository...

CLM 2012 Administration Workshop Page 11

http://www.7-zip.org/
http://www.7-zip.org/
https://jazz.net/downloads/rational-team-concert/%20
https://jazz.net/downloads/rational-team-concert/%20
https://jazz.net/downloads/rational-team-concert/releases/4.0.0.1?p=allDownloads

IBM Software

__ii. Select Browse and navigate to the location where you unzipped the downloaded
repository. Select OK.

__b. Select OK.

__c. Make sure you uncheck Search service repositories during installation and updates.

__d. Select OK.

1.3.2 Install the Server

__1. On the Installation Manager Main page select Install.

__a. On the first page of the install, select “Change And Configuration Management” and
“Jazz Team Server”. You can select “Requirements Management” and “Quality
Management” also to install these applications, but they are not required.

__b. Select Next.

__c. Read the license agreement and if you accept, select Next.

Windows 7 Supported OS Warning

If you are running under Windows 7 you may see a
Supported Operating System warning. You can ignore
this and select Next.

__d. Change the Shared Resources Directory to C:\IBM\IBMIMShared or
C:\JSWorkshops\IBM\IBMIMShared. Select Next.

__e. Change the installation directory to C:\JSWorkshops\IBM\JazzTeamServer.

__f. If you're running on a 64-bit system, make sure the Architecture Selection is 64-bit.
Select Next.

__g. Select any additional languages you want to install, then select Next.

__h. Verify that you are installing the correct applications, then select Next.

CLM 2012 Administration Workshop Page 12

IBM Software

__i. Make sure Install Tomcat 7 Is selected under Web Application Location. Make sure Use
default 3.x/4.x application context roots is selected under Context Root Options.
Select Next.

__j. Verify the installation options, then select Install.

__k. On the final page displayed when installation is complete, select None, then Finish.

1.3.3 Install the Client

Install the Rational Team Concert Eclipse client:

__1. Return to the Installation Manager Main window (restart Installation Manager if it is not open)
and select Install.

__a. Under Install Optional Tools select the link for Rational Team Concert – Client for
Eclipse IDE then select Next.

__b. Read the license agreement and if you accept it, select Next.

__c. Change the installation directory to C: \JSWorkshops\ BM \ TeamConcert .

__d. Under Architecture Selection, select 64-bit. Select Next.

__e. Do NOT check Extend an existing Eclipse. Select Next.

__f. Select any additional languages, then select Next.

__g. In Select the features to install, make sure Rational Team Concert – Client for
Eclipse IDE 4.0.0.1 is selected. Do NOT select Sametime Integration Update Site.
Select Next.

CLM 2012 Administration Workshop Page 13

file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert

IBM Software

__h. Under Common Configurations, select Access help from the Web. Select Next.

__2. On the review page, make sure the installation directories and packages are correct, and select
Install.

CLM 2012 Administration Workshop Page 14

IBM Software

1.4 Plain ZIP Install

1.4.1 Download Files

__1. Go to the All Downloads tab on the CLM 4.0.0.1 download page (or the page for the latest
version of CLM).

__a. Scroll Down to the section “Plain .zip Files”.

__b. In the Plain .zip Files section, download the compressed “Jazz Team Server and the
CCM Application, and Trial licenses for Rational Team Concert” file for Windows x86 (or
the platform you're using) to C:\JSWorkshops\Downloads.
The File is most likely named JTS-CCM-keys.XXXX_YYYY with XXXX representing the
architecture and YYYY representing the version.

__c. In the Plain .zip Files section, download the compressed “Client for Eclipse IDE” file for
Windows x86 (or the platform you're using) to C:\JSWorkshops\Downloads.
The File is most likely named RTC-Client-XXXX_YYYY with XXXX representing the
architecture and YYYY representing the version.

1.4.2 Install the Server

__1. Select the JTS-CCM-keys-XXXX_YYYY.zip and use 7Zip to extract the content to
C:\JSWorkshops\IBM\JazzTeamServer
The server will be ready to be used once the package gets uninstalled.

1.4.3 Install the Client

__1. Select the RTC-Client-XXXX_YYYY.zip and use 7Zip to extract the content to
C:\JSWorkshops\IBM
The client will be ready to be used once the package gets uninstalled.

CLM 2012 Administration Workshop Page 15

http://www.7-zip.org/
http://www.7-zip.org/
https://jazz.net/downloads/rational-team-concert/%20
https://jazz.net/downloads/rational-team-concert/%20
https://jazz.net/downloads/rational-team-concert/releases/4.0.0.1?p=allDownloads

IBM Software

__2. Your folder C:\JSWorkshops\IBM should now look like below

CLM 2012 Administration Workshop Page 16

IBM Software

1.5 Summary

Congratulations! You've installed your process development environment. You now have the following in
your process development environment:

• A RTC Server for process development with a JTS and associated CCM application. This is
where you'll develop your new process templates and descriptions to simulate how a real project
would make use of them.

• The Rational Team Concert Eclipse client.

CLM 2012 Administration Workshop Page 17

IBM Software

1.6 Appendix A – Install Tips

This Appendix shares some best practices identified over the time when installing CLM servers such as
RTC.

• On windows, avoid installing into Program Files

These folders are protected by Windows even if logged in as administrator and prevent from
creating folders in the substructure. During start up, the Jazz Servers need to create folders and
unpack files in the folder substructure. Since this is prevented by the OS the start up will fail,
unless you explicitly run the server start up using Run As Administrator.

• Install the Installation Manager and shared resources into one folder e.g. /IBM or /opt/ibm

This has proven to be a best practice, because it is a one time choice on a machine and can not
easily be changed later. To change it you would have to uninstall Installation Manager and
everything installed using it first.

Using a dedicated folder allows to easily find the location, especially if you make it a general rule
for all your installs. It will help you in case it is necessary to deploy hot-fixes for shared
components.

A typical example would be using the folders below:

◦ /IBM/Installation Manager

◦ /IBM/IBMIMShared

• Install the CLM Products into a short path, in a production Install consider to provide a
version number in the path

A dedicated location helps finding the location e.g. for back up. It makes running and marinating
different versions on a machine easier.

The Eclipse and Java Package naming conventions create long path names that can create
issues on some operating systems.

The version number shows in Installation Manager dialogs helping with identifying what you
deinstall. It also helps with upgrades, especially running upgrade scripts. The version number is
clearly visible in provided parameters and errors are more likely to be detected.

It is easier to understand which files can be deleted after an upgrade.

A typical setup is presented below

◦ /clm/4.0/JazzTeamServer

◦ /clm/4.0.0.1/JazzTeamServer

CLM 2012 Administration Workshop Page 18

IBM Software

• Change the Index File locations to a well known location with high bandwidth, enough
disk space and specify absolute paths for the index files in the teamserver.properties

The Index Files are used by the applications in several search operations, high bandwidth avoids
adverse effects on performance.

The Index Files partake in upgrade operations. They are upgraded. Using relative paths can
cause issues when upgrading, requiring a copy of the files or a loss of data.

The Index Files need to be included in backup operations as described here in the Deployment
Wiki. The backup procedure might fail for the Index Files after an upgrade, or restore.

Using the default locations in the server install folder with an absolute path can cause a loss of
the Index Files when deleting files of an older install after an upgrade.

See a possible choice of the location for the index files below

◦ /clm/index

• Temporary Files

It is not well known that the Jazz Products also use some temporary files to store data. The
temporary files require space and permission to store these files. On windows you can find the
files by default in as the folders C:/tmp/contentservice and c:/tmp/versionedcontentservice.

If you accidentally delete those folders and the server gets confused, you need to restart the
server.

These locations can be modified in the “Advanced Properties” of the Server Administration page,
of your Jazz product.

• Temporary Files and Linux machines: if you plan to run the server with non-root user

Running the server under a user account different from root (and without sudo), requires that you
make sure that the user ID you plan to use have write permission to the “/tmp” location, and
specially the temporary folders that Jazz Products use, by default /tmp/contentservice and
/tmp/versionedcontentservice. It is worth checking this permissions before first execution as they
are usually constrained in a Linux environment.

CLM 2012 Administration Workshop Page 19

file:///C:/Jumpstart_WS/Warroom/c:/tmp/versionedcontentservice
file:///C:/Jumpstart_WS/Warroom/tmp/contentservice
https://jazz.net/library/article/1271
https://jazz.net/library/article/1271
https://jazz.net/wiki/bin/view/Deployment/BackupCLM
https://jazz.net/wiki/bin/view/Deployment/BackupCLM
https://jazz.net/library/article/1271
https://jazz.net/library/article/1271
https://jazz.net/library/article/1271
https://jazz.net/library/article/1271

IBM Software

Lab 2 Set Up the Environment

In this lab you will set up your process development environment. This involves setting up the client and
server software and creating a project area.

You will set up the following software in this lab:

• JTS and RTC applications

• A RTC client (Eclipse) and the required workspace

When you're through with this lab, you will have learned:

• How to set up the server

• The importance of IP ports

• How to set up the RTC Eclipse Client

• How to create a project from a template

• How to assign Roles to users

CLM 2012 Process Enactment Workshop Page 20

IBM Software

2.1 Set Up The Server Environment

Every Jazz Server requires a Public URI. This URI is used to access the server, and it's also used to
generate the references to the repository resources for accessing them, and to link data between
applications.

Public URI and Test Environment

Planning the Public URI you will use in your CLM
installation is one of the most important steps in your
deployment planning. See Planning your URIs.

While for a Test Environment it won't generally be that
important as for a Production one, a minimum decision
regarding the URI so it is meaningful and allows you to
take the most of your Test Environment is advised.

When defining the Public URI for your deployment, “localhost” is frowned upon. Although this does not
matter much for a test system, the suggestion is to avoid using it.

In addition it is important to know how to change the port for the server, in case you want to run several
servers on one machine, or comply with some standards in your organization.

The next section shows how this can be done.

2.1.1 Create an Alias for the host name

__1. To be able to use fully qualified domain names without actually having to change the domain
name server, use a host Alias.

__a. Open the hosts file for editing as an administrator by right-clicking Notepad.exe and
clicking Run as Administrator. On Windows, the hosts file is located at
C:\Windows\System32\drivers\etc\hosts.

__b. Add the following line to the bottom of the file: 127.0.0.1 clm.process.ws

__c. Save and close the file.

CLM 2012 Process Enactment Workshop Page 21

http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0/index.jsp?topic=%2Fcom.ibm.jazz.install.doc%2Ftopics%2Fc_planning_URLs.html

IBM Software

What Did I Just Do?

By adding that line to the hosts file, you have told your
networking software that any requests to a machine
named clm.process.ws should be routed to the
127.0.0.1 address (which is your local machine).

If you were doing this in a REAL environment, you
would have your systems administrators make an entry
into the DNS tables (which are used to resolve host
names) that would route the base of your selected
Public URI to the machine hosting your Jazz
infrastructure.

CLM 2012 Process Enactment Workshop Page 22

IBM Software

2.1.2 Configure Tomcat Ports

__1. Configure Tomcat to serve applications on HTTP and HTPPS well known default ports:

We're doing this because...

We have decided that our public URI for CLM
deployment is going to be clm.process.ws. We want it to
be served with no reference to ports on the server to
make user access easier.

This will also allow our installation to scale in the future
and leverage middleware like Web Server or DNS virtual
names. We won't be scaling to large topologies in this
workshop, but it's a good practice to install this way
when doing evaluation topologies. It will make future
changes easier if your topology needs to evolve into a
more robust environment.

__a. Open the server configuration file
C:\JSWorkshops\IBM\JazzTeamServer\server\tomcat\conf\server.xml for editing.

__i. Look for the string '9443'

__ii. Change all the occurrences in non-commented nodes of that port and
redirectPort attribute value to 443

__iii. Perform another search looking for the string '9080'

__iv. Change the occurrences in non-commented nodes of that port attribute value to
80

Information

Just the Connector nodes for HTTP and HTTPS are required
to be changed for CLM. However, you don't want redirection
to a port you don't want to use in your deployment and which
may be in use by other services.

The resulting nodes for HTTP and HTTPS will look like the following:

...

<Connector port="80" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="443" />

...

CLM 2012 Process Enactment Workshop Page 23

IBM Software

<Connector port="443"
 connectionTimeout="20000"
 maxHttpHeaderSize="8192"
 maxThreads="150"
 minSpareThreads="25"
 enableLookups="false"
 disableUploadTimeout="true"
 acceptCount="100"
 scheme="https"
 secure="true"
 clientAuth="false"
 keystoreFile="ibm-team-ssl.keystore"
 keystorePass="ibm-team"

 protocol="HTTP/1.1"
 SSLEnabled="true"

 sslProtocol="${jazz.connector.sslProtocol}"
 algorithm="${jazz.connector.algorithm}"
 URIEncoding="UTF-8" />

__b. Save your changes and exit.

2.1.3 Server Language

The Jazz server picks up its language based on the language settings of the server. This can result in a
mix of languages. Perform the following steps if you want to enforce a server language different than the
one set on a server.

__1. Modify server startup language setting

__a. Open C:\JSWorkshops\IBM\JazzTeamServer\server\server.startup with an editor

__b. Add -Duser.language=en to the end of the JAVA_OPTS in
C:\JSWorkshops\IBM\JazzTeamServer\server\server.startup. The file should now look as
below:

That would set the server language to English. Set the property to the appropriate locale value if
you want a different language.

__2. Save your changes

CLM 2012 Process Enactment Workshop Page 24

IBM Software

2.1.4 Web UI Language

The Web UI uses the browser language to display information. Dependent on your install, that can also
lead to mixed languages. You may want to configure your browser language preferences to match your
expected language in RTC UI. Note that displaying a certain language in the Web UI relies on the
specific language pack to be installed on the RTC server.

While this is a client configuration, you want to perform these steps at this point as this is the client you
will use for the server post-installation setup process.

__1. In Firefox open Tools>Options

__a. In the options navigate to Content

__b. If you have not yet done that, deactivate the Pop-Up blocker

__c. Click on the Choose... button in the Languages section at the end.

__d. Add English [en] as language and use the move up button to bring it to the top.

CLM 2012 Process Enactment Workshop Page 25

IBM Software

2.2 Set Up the RTC Server

Set up the test server that will be used to experiment with process enactment.

__1. Set up the CLM applications and JTS server

__a. Startup the JTS server by running
C:\JSWorkshops\IBM\JazzTeamServer\server\server.startup.

__b. Open a browser and run setup by navigating to https://clm.process.ws/jts/setup. Ignore
any security warnings and add a security exception if asked.

__c. Log in to JTS using as login/password: ADMIN/ADMIN.

__d. Select Express Setup, then Next.

__i. In Configure Public URI, assure https://clm.process.ws/jts is the Public URI.

__a. Select I understand that once the Public URI is set, it cannot be modified,
then select Next.

__ii. On the Create User page, create the PEW admin user then select Next:

__a. User ID: pewadmin

__b. Name: pewadmin

__c. Password: pewadmin

__d. Email: pewadmin@bogus.ws

__iii. Select Next when Express Setup is complete.

__e. On the Assign Licenses page:

__i. Under Rational Team Concert, next to Rational Team Concert – Developer, select
Activate Trial if you are asked for activation.

You can optionally do the same for Rational Requirements Composer – Analyst
and Rational Quality Manager – Quality Professional, if you deployed that
applications as well.

__ii. Make sure the Rational Team Concert – Developer is checked, so it will be
assigned to the pewadmin user.

__iii. Select Finish.

__f. On the Server Administration page, select the link for Create Users and enter the
following values, then select Save:

CLM 2012 Process Enactment Workshop Page 26

mailto:pewadmin@bogus.ws
https://localhost:9443/jts
https://localhost:9443/jts/setup

IBM Software

__i. Username: Jim,

__ii. User ID: jim

__iii. email address jim@bogus.ws

__iv. Repository permissions: JazzAdmins (you can leave the default selected
JazzUsers too).

__v. Assign a License of type: Rational Team Concert – Developer.

You have set up your Jazz Team Server and the CCM application.

CLM 2012 Process Enactment Workshop Page 27

mailto:jim@bogus.ws

IBM Software

2.3 Set Up the RTC Eclipse Client Software

Process configuration can be done using the Web UI as well as the Eclipse client. Currently there are
some features needed for process enactment not available in the Web UI. For this reason we need to
configure an Eclipse client that will be used to do the Process customization.

2.3.1 Eclipse Client Language

The Eclipse Client picks up its language based on the language settings of the local machine. This can
result in a mix of languages if you have installed language packs. Follow these steps if you want to
enforce a language different than the one set on the machine.

__2. Modify the user setting:

__a. Open the file eclipse.ini in C:\ JSWorkshops \IBM\TeamConcert or if you installed the
plain ZIP version in C:\JSWorkshops\IBM\jazz\client\eclipse

Set Other Jazz Clients Language

You can use the method described above to also set the
SCM Command Line Interface, the .ini file is called
SCM.ini and the Jazz Build System toolkit where the .ini
file is called JBE.ini.

__b. Add -Duser.language=en to the end of the file. It should now look like below

Again, this sample setting would enforce the client language to English. Set the property
to the appropriate locale value if you want a different language.

2.3.2 Eclipse Client User Preferences

Working with an Eclipse client has to be always performed in an Eclipse workspace context. You need to
create a workspace and set the preferences for your work.

CLM 2012 Process Enactment Workshop Page 28

file:///C:/Jumpstart_WS/Warroom/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Warroom/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Warroom/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Warroom/PEW/IBM/TeamConcert
file:///C:/Jumpstart_WS/Warroom/PEW/IBM/TeamConcert

IBM Software

Eclipse Workspace Preferences

A basic set of RTC Eclipse preferences are instructed for
the purpose of the workshop. You may want to configure
a different set of preferences for your particular project
needs.

__1. Set up the Rational Team Concert Eclipse Client

__2. If you did a Web Install or an Installation Manager Install, select Start > All Programs >
Rational Team Concert Client > Rational Team Concert Client.

If you installed the plain ZIP version open the file eclipse.exe in
C:\JSWorkshops\IBM\jazz\client\eclipse.

Starting the RTC Eclipse Client from the .exe file

You can also start the client by opening the eclipse.exe
file if a Web or Installation Manager install method was
used. Following the directions in Lab 1, the file will be
located in C:\JSWorkshops\IBM\TeamConcert

__a. When asked to select a workspace, enter C:\JSWorkshops\Workspaces\Lab1.

__b. Close the Welcome view.

__3. Set up preferences for RTC.

__a. Select Window > Preferences

__b. In Team > Jazz Source Control > Check-in Policies, select the following:

__i. Auto check-in local changes

__ii. Perform check-in whenever a resource is modified

__iii. Leave all other settings as-is.

__iv. Select OK.

__c. Configure external browser for Eclipse client:

CLM 2012 Process Enactment Workshop Page 29

file:///C:/Jumpstart_WS/Warroom/Users/jruehlin/Users/C:/PEW/IBM/TeamConcert

IBM Software

External web browser in eclipse

There is a bug in Rational Team Concert 4.0 where the
client crashes when it tries to open the internal web
browser. You modify this configuration in these steps to
workaround the problem. See the following link for more
information.

__i. Open Window > Preferences

__ii. Navigate to General > Web Browser

__iii. Make sure you check Use external web browser. Select OK.

__4. Create connections to the process and software development RTC repository

__a. Switch to the Jazz Administration perspective.

__b. Select Create a Repository Connection in the Team Organization view. Enter the
following information, and select Finish. Accept any certificates when prompted.

__i. URI: https://clm.process.ws/ccm

__ii. Name: SoftwareDev

__iii. UserID: jim

__iv. Password: jim

__c. Switch to the Team Artifacts view and you'll see the repository connections.

CLM 2012 Process Enactment Workshop Page 30

https://clm.process.ws/ccm
https://jazz.net/library/article/928

IBM Software

2.4 Create a Test Project

Process customization is always done against a project. This project is created in this section.

__1. Switch to the Jazz Administration perspective and select the Process Template view.

__a. Deploy the process templates if necessary, by clicking the Deploy Predefined Templates
icon. Select OK when prompted and wait for the operation to finish.

__b. Expand the repository connection node, right-click on the OpenUP Process template in
the repository. Select New > Project Area.

Which process Template?

Alternatively you can use also one of the following
process templates

– Formal Project Management Process

– Scrum

– Simple Team Process

If you do so, some screen shots and roles used in the
following labs might not be available and you might have
to modify the labs a bit.

Please note in RTC 5.0.1 the OpenUp and the Simple
Team Process have been removed from the server and
are available as separate download in the All downloads
section of the product download pages.

__c. Create a project with the following attributes, then select Next:

__i. Name: Nifty Application Project

CLM 2012 Process Enactment Workshop Page 31

IBM Software

__ii. Summary: The project for the Nifty application.

__d. Select Automatically initialize the Project Area on Finish as specified in the process
template. Then select Finish.

Should you delay initialization?

Delaying process initialization is useful when you want to
change the initialization information for the project. For
example, if you want to add or remove work item
templates that automatically create work items when the
project is initialized.

__2. The project area is created and a view of the project is displayed. Add the following
customization:

__a. Expand the Members section of the Overview tab.

__i. Add the user Jim to the members and add the following process roles to Jim (in
the order listed below, which will cause the Project Manager to be the first
assigned role listed for Jim), then select Finish:

__a. Stakeholder

__b. Developer

__c. Project Manager

__ii. Make sure the roles are top-down Manager, Developer, Stakeholder and
everyone.

__b. Save the project.

__c. Review the project and its process.

__i. Categories

__ii. Timelines

__iii. Process Configuration

CLM 2012 Process Enactment Workshop Page 32

IBM Software

2.5 Summary

Congratulations! You've set up your process development environment to enact your process by setting
up the RTC server and client environments, and creating a project. You now have the following in your
process development environment:

• A process development environment with a JTS and associated CCM application.

• A project, Nifty Application Project that you can manage the development of your process.

CLM 2012 Process Enactment Workshop Page 33

IBM Software

2.6 Appendix A – Additional Considerations

Please find some additional topics you should consider when setting up your servers.

• Other Tomcat TCP Ports

Tomcat uses other ports as shutdown port etc. If you want to run several Tomcat servers on one
machine you have to make sure that the instances use different ports, including as shutdown
ports.

• Tomcat Shutdown Password

You want to change the default shutdown password, otherwise anyone with a Tomcat install can
shutdown your server using the default password and port.

• VMWare 8

Uses 443 for VM sharing. Disable sharing in VMWare or select another port.

CLM 2012 Process Enactment Workshop Page 34

IBM Software

Lab 3 Configuring Work Items

This lab will guide you through the work items configuration process by the definition of a new Work
Item Type within a new custom Work Item Type Category in Rational Team Concert. You will define the
basic structure and information for this new type.

Lab Scenario

Acme Corporation wants to embrace new technologies in their applications evolution and to be more
responsive to customer needs. The team working in “Nifty Application 1.0” has been discussing how
the application should evolve and how the architecture will adopt these new technologies. In addition,
new feature requests have been received that will require extending the application's technology. The
team has determined that they need to dedicate some development effort to exploring experimental
changes in the application. The team needs to define how this effort should be tracked as part of their
work process.

In this lab you will:

• Review and understand the new process needs that you have to implement in RTC

• Create new work item types and type categories, understanding the difference between them

• Create new attribute types and reuse existing attributes

• Create and understand work item's workflows, and how to link workflows with work items

• Create and adjust the presentation of your work items

Lessons Learned:

• Create work item types and customize all the basic elements involved in their definition

CLM 2012 Process Enactment Workshop Page 35

IBM Software

3.1 Customize the Process in RTC

As the Project Leader of Acme in the context of Nifty Application Project, you have been assigned the
task of modifying the process of your project. The project requires a new work item type “Technology
Review” with a dedicated workflow and several custom attributes. You will also set the permission for
roles to update information at the work item.

3.1.1 Understand the new needs

Your process engineers have provided you with some information about the required process changes.
Acme uses Rational Method Composer to describe the organization's processes, so your process
engineers have provided you with the new process description elements for you to implement in RTC.
Review this information and get back to it, in case you need to.

The information below describes the Technology Review work product, that you need to implement in
your RTC process. The information also documents which role is responsible for modifying this work
product; the developer.

A formal description of this work product allows you to understand its lifecycle and how it will fit in the
overall team work needs.

CLM 2012 Process Enactment Workshop Page 36

IBM Software

Along with its formal description, Key Considerations for the Work Product are documented. Reading
carefully these considerations you can deduce the basic set of attributes that you need to implement:

CLM 2012 Process Enactment Workshop Page 37

IBM Software

Your process engineers have provided you with the Work Product workflow, based on its formal
description. It represent its lifecycle that you will have to implement in RTC:

Here is an identical description of the workflow that you need to implement. It is presented in a different
way that makes easier to understand the different transitions:

CLM 2012 Process Enactment Workshop Page 38

IBM Software

3.1.2 Create a new Work Item Type with Custom Attributes

In this section you will create the new work item type Technology Review and add custom attributes you
need to implement your business logic, based on the description provided in the previous section.

__1. Create a Work Item Type. You are going to model the work product Technology Review as a
new type of work item.

__a. Open the Rational Team Concert eclipse client if not already open, and switch to the
Work Items perspective.

__b. Open the project editor if needed by right-clicking Nifty Application Project and
selecting Open in the Team Artifacts view.

__c. Open the Process Configuration tab, and navigate to Project Configuration >
Configuration Data > Work Items > Types and Attributes.

__d. Click Add... in the Types and Attributes section in the right side. Enter the following
values and select OK:

__i. Name: Technology Review

__ii. ID: com.acme.openup.workitem.workitemType.technology_review

__iii. New Category (CHECKED):
com.acme.openup.workitem.workitemTypeCat.technology_review

What is the deal with the Ids?

When customizing your process you will have to define
IDs for different items: work item types, attribute types,
presentations, …

It is a good practice to define a naming convention within
your enterprise. The elements of process customizations
should follow this naming convention so the RTC
process is consistent in your company, and it will ease
the development leveraging these IDs: you will be able
to locate process customizations within the whole
process. In addition, as removing elements is an
operation to avoid for its potential impact, it is also a
good practice to instead modify the ID of the elements
you want to deprecate with a certain pattern.

CLM 2012 Process Enactment Workshop Page 39

IBM Software

What is a Work Item Type Category?

Work Item Type Categories define a common workflow
and custom attributes to be shared by all the work item
types that belong to it.

As our new work item type will have its own workflow, we
need to create a new category along with the type.

__e. Click the Icon drop-down and select architectural.gif

__f. Save your changes.

__2. Add Custom Attributes. You have reviewed the Key Considerations section of Artifact:
Technology Review (3.1.1 Understand the new needs on page 36) and have identified the
custom attributes to define in Rational Team Concert for the new work item type. Perform the
following steps to create them:

__a. Select the Types and Attributes node in the Configuration Data > Work Items tree if
not already there

__b. Make sure Technology Review Work Item Type is selected

__c. Navigate to the Attributes section at the bottom of the page.

__d. Select Add …

__e. Enter the following values:

__i. Name: Technology Name

__ii. ID: com.acme.openup.workitem.attribute.techname

__iii. Type: Medium String

__iv. Leave the rest of the parameters with the default value

__v. Select OK.

__f. Repeat steps d-e with the following information:

Name ID Type

Estimated Effort com.acme.openup.workitem.attribute.esteffort Small String

Cost com.acme.openup.workitem.attribute.cost Small String

CLM 2012 Process Enactment Workshop Page 40

IBM Software

Estimated Investment com.acme.openup.workitem.attribute.estinvest Small String

Total Cost com.acme.openup.workitem.attribute.totalcost Small String

Workflow Information com.acme.openup.workitem.attribute.wkinfo Wiki

Affected Departments com.acme.openup.workitem.attribute.affdepts String List

Responsible Architect com.acme.openup.workitem.attribute.resparch Contributor

String type for cost attributes?

You may wonder why you are defining these attributes'
types as String instead of Integer. It's all for the sake of
customization exercises you will perform in the following
labs.

__3. Reuse existing attribute for Impact information:

__a. Select Add …

__b. Check Reuse Existing Attribute and select “Impact – type: risk (Enumeration)” from
the drop-down list

__c. Select OK.

__d. Save your changes.

Re-using attributes

This reuse feature allows you to leverage attribute
customizations from other existing work item type
categories, easing maintenance of information.

__4. Define enumeration for the complexity attribute:

__a. Select the Enumerations node in the Configuration Data > Work Items tree

__b. Select the Add... button located below Choose the Enumeration to edit

CLM 2012 Process Enactment Workshop Page 41

IBM Software

__c. Enter the following values and select OK:

__i. Name: Complexity

__ii. com.acme.openup.enum.complexity

__iii. Process Specification: CHECKED

__d. Select Add... at the Enumeration Literals section, and enter the following values for
the “Name” attribute of each literal value, you can leave the “External Value” field
empty: (assign icons as you will)

– Low

– Manageable

– Complex

– Unapproachable

__i. Select the value Manageable for Default Literal and Unassigned Literal

__e. Create the attributes for the enumeration:

__i. Navigate back to the Types and Attributes node in the Configuration Data >
Work Items tree

__ii. Make sure Technology Review Work Item Type is High-lighted

__iii. Navigate to the Attributes section at the bottom of the page.

__iv. Select Add …

__v. Enter the following values, then select OK:

__a. Name: Complexity

__b. com.acme.openup.workitem.attribute.complexity

__c. Type: Complexity (Enumeration)

__f. Save your changes.

CLM 2012 Process Enactment Workshop Page 42

IBM Software

__g. At the top of the Attributes section, if you check Show only custom attributes, you
should see something like the following:

Adding attributes to existing work items

If you add new attributes to work item types that already
have work items created, you have to Synchronize the
attributes to be able to use the new attribute in that
existing work items.

The article Cool “Hidden” Features in Rational Team
Concert: Part 2 explains this feature. Part 3 contains
links to the other articles (attributes synchronization is
located in part 2 of the series)

CLM 2012 Process Enactment Workshop Page 43

https://jazz.net/library/article/529
https://jazz.net/library/article/534

IBM Software

3.1.3 Create a Workflow

In this section you will create the workflow for the Technology Review work item type you just created,
and connect it to the work item type.

__1. Define the workflow. Your organization's Process Engineer described the transition table
matrix that will govern the lifecycle of the work product. Now you will create a work item
workflow matching that description.

__a. Select the Workflows node in the Configuration Data > Work Items tree.

__b. Select Add... next to the Choose the workflow to edit field.

__c. Enter the following values and then select OK:

__i. Name: Technology Review Workflow

__ii. ID: tecReviewWorkflow

__d. Navigate down to the States section. Click Add... button and create the states with
the following information: (assign icons as you will)

Name Group Show Resolution

Proposed Open Unchecked

Under Research In Progress Unchecked

Experimental In Progress Unchecked

Approved In Progress Unchecked

Rejected Closed Checked

Adopted Closed Unchecked

CLM 2012 Process Enactment Workshop Page 44

IBM Software

What are the State Groups?

The State Groups help you categorize states and
resolutions that relate to each other.

You can create new state groups and associate them to
the default group categories: Open, In-Progress, Closed.

These grouping of states and resolutions are very useful
for building queries / reports, and when you extend
Rational Team Concert and want to interact with Work
Items states.

In addition, these categories are associated with OSLC
state groups, thus providing a way of isolating the
detailed knowledge of your actual defined workflow for
integration with other systems via OSLC.

__e. Create the actions in the transition matrix: navigate to the Transitions section of the
page and perform the following changes:

__i. In the combination From “Proposed” To “Under Research”, click the combo
box and select New Action...

__ii. Enter Research as the name and select OK.

__iii. Repeat steps i – ii, with the rest of the actions until you build the following
transition table (which maps with the table matrix described in Rational
Method Composer provided to you earlier in this lab in 3.1.1 Understand the
new needs on page 36):

__f. Define the start action:

__i. Select the combo box next to Start Action and click New Action...

__ii. Enter Propose as name and Proposed as Target State. Select OK.

CLM 2012 Process Enactment Workshop Page 45

IBM Software

Resolve and Reopen actions

You may wonder why we left these fields blank.

Our defined workflow has two different possible end
states depending on the path: we didn't consider a
unique and global resolve action.

In addition, we defined a reopen type of action
(“Reconsider”) for just one of the closed states.

__g. Define the resolutions: you want to further explain the possible rejections of a new
technology.

__i. Navigate to the Resolutions section.

__ii. Click Add...

__iii. Enter Inaccurate as the name and Closed as the Group. Select OK.

__iv. Repeat the steps to include a resolution called Extreme Impact member of
Closed Group.

__h. Navigate back to the Actions section of the page and configure resolutions:

__i. Select the Reject action in the left panel

__ii. Mark the check box next to both resolutions in the right side.

__i. Save your changes.

__j. Associate the workflow to the work item:

__i. Navigate to the Types and Attributes node under Work Items

__ii. Choose Technology Review under Work Item Types

CLM 2012 Process Enactment Workshop Page 46

IBM Software

__iii. Navigate to Workflow section, expand the combo and select Technology
Review Workflow

__iv. Save your changes.

CLM 2012 Process Enactment Workshop Page 47

IBM Software

3.1.4 Customize the Presentation For the Work Item Type

To be able to use the custom attributes at the Technology Review work item type, you will now configure
the editor presentations for the work item type.

__1. Customize the presentation for the work item.

__a. Select the Editor Presentations node in the Configuration Data > Work Items tree.

Work Item editor presentation structure:

The work item editor presentation is structured in tabs.
Each tab contains slots which are the containers for the
actual presentation of information. This information can
be “attribute-based” or “non-attribute” based (like the
presentation for the attachments of a work item).

How information is placed in a tab, and the organization
of the slots, is based on the concept of a layout. There
are different types of layouts depending the information
you want to place and how you want to organize it. For
more information see Work item editor presentations.

The presentation editor is based on the concept of
reuse. The definition of tabs and slots can be shared
among different work item editor presentations. If you
modify a shared configuration it will apply to all the
presentations that make use of it. As an alternative, you
have the option of creating new presentations (whether
tabs or layouts), or duplicating an existing presentation
and customize for your particular needs.

__b. For ease of use, you will create a presentation based on the existing one,
customizing it to hold the required attributes. Make sure in the Choose editor
presentation to edit box the com.ibm.team.workitem.editor.default is selected, and
select Duplicate …

__c. Enter the following ID and select OK: com.acme.openup.workitem.editor.techreview

__d. Adjust presentation of attributes: you based your presentation in the default one
which is used by Task work items. As the Technology Review work item is a
specialized type of task, you will be just adding a specialized tab for the new
information and reusing the rest of the editor presentation.

__i. Select Add Tab … and enter the following values, then select OK.

__a. Title: Tech Review Details

__b. Layout: Custom Attributes Layout

CLM 2012 Process Enactment Workshop Page 48

https://jazz.net/library/article/130

IBM Software

__c. Create Tab ID: CHECHED

__d. ID: com.acme.openup.workitem.tab.techrevdetails

__ii. High-light the new created tab and select Add Section …. Enter the following
values, then select OK.

__a. Title: Adoption Cost Estimations

__b. Slot: Left

__c. Create Section ID: CHECKED

__d. ID: com.acme.openup.workitem.section.techcostdetails

__iii. Repeat the previous steps to add a new section with the following details:

__a. Title: Tech Review Miscellaneous

__b. Slot: Right

__c. Create Section ID: CHECKED

__d. ID: com.acme.openup.workitem.section.techgeneralinfo

__iv. Highlight Adoption Cost Estimations section and click Add Presentation... for
each of the items listed below. (do it in the order of appearance. All of them
are “Attribute based”):

Attribute Kind Label Description

Affected Departments String List NA NA

Estimated Effort String NA Measured in developers per day

Cost String Average Cost Person hour cost

Estimated Investment String NA Material resources needed estimation

Total Cost String NA NA

CLM 2012 Process Enactment Workshop Page 49

IBM Software

__v. Now highlight Tech Review Miscellaneous section and click Add
Presentation... for each of the items listed below (do it in the order of
appearance):

Attribute Kind Label Description

Technology Name String NA Descriptive name of technology under study

Workflow Information Wiki NA NA

Complexity Enumeration NA NA

Impact Enumeration NA NA

Responsible Architect Contributor

__e. Highlight the Tech Review Details tab and click Move Up until you place it just after
the Overview tab.

__f. Save your changes.

__g. Link the presentation to the work item:

__i. Navigate to the Types and Attributes node under Work Items.

__ii. Make sure Technology Review Work Item Type is High-lighted under Work
Item Types

__iii. In the Work Item Editor box, select
com.acme.openup.workitem.editor.techreview

__iv. Save your changes.

CLM 2012 Process Enactment Workshop Page 50

IBM Software

Different types of editors?

You may noticed that there are other type of editors in
this page. The main differences are:

– Work Item Editor: the main editor for managing
work items. Used in the different clients when
you open a work item.

– Inline Work Item Editor: Inline editors are
presented in the query results in Web UI

– Lightweight Work Item Creation Dialog:
presentation for wizards that allow a quick
creation of work items, like when delivering
change sets or from other integrated CLM
applications.

– Plan Editor Preview: presentation for modifying
work items from within a plan.

For all but the main editor, the default one usually is
enough for the needs of your project, as they present the
minimum basic set of attributes. However, you can also
customize the other editors to your needs as we did in
the example for the full editor presentation.

__h. Check the presentation.

__i. Select the arrow next to the New Work Item icon:

CLM 2012 Process Enactment Workshop Page 51

IBM Software

__ii. Select Nifty Application Project > Technology Review. A new work item
appears

__iii. Select the Tech Review Details tab. It should look like the following:

CLM 2012 Process Enactment Workshop Page 52

IBM Software

3.1.5 Configure Permissions

To make sure only certain roles are able to change the new custom attributes created for the Technology
Review work item type you will now set the role based permissions. You will also specify the roles that
will be able to execute the transition actions of the workflow you just created. The main editor for this
artifact is the developer (see 3.1.1 Understand the new needs on page 36).

__1. Adjust permissions for attributes and workflow states: you have to give permissions to the
roles for the new items created in the process.

__a. Return to the project area editor and select Permissions under Team Configuration
node.

__b. Check the option to Show all actions and roles

__c. According to the information you were given (see 3.1.1 Understand the new needs
on page 36), the Developer is the role responsible of modifying the Technology
Review work product.
In addition, you will grant the Tester role the needed permissions for the phases of
lifecycle in which his collaboration is required for the Technology Review. To adjust
the process:

__i. Adjust permissions to the attributes:

__a. Open the node Work Items > Save Work Item (server) > Modify the
work item

__b. Give the Developer role the only one to modify the created attributes
(remove the permissions to the Project Manager role):

__ii. Adjust permissions for workflow:

__a. Open the node Work Items > Save Work Item (server) > Create a
work item > Create a work item of a specific type

CLM 2012 Process Enactment Workshop Page 53

IBM Software

__b. Under Create a 'Technology Review' work item, CHECK the boxes for
the Developer and Tester roles, and UNCHECK for the rest of the
roles.

__c. Open the node Save Work Item (server) > Trigger a workflow action

__d. Make sure the Developer role is the only one with permission to
modify the actions which have in parenthesis the string “(Technology
Review workflow)”. Give also permission to the Tester role for the
actions of Propose and Reject.

__d. Save your changes.

CLM 2012 Process Enactment Workshop Page 54

IBM Software

3.2 Gather the process changes

After successfully customizing the process in a living project, you want to gather this changes back into
the templates managed in your process development environment, so new projects can be created with
these new items already defined.

Customizing and testing in my production project?

The configuration steps in this lab were directly
performed in the Nifty Application production project by
the project leader, to focus in the features introduced. In
your real production environment you, as project leader,
would have a testing environment in which you validate
process changes before applying them in production.
This test environment, depending on your needs, could
range from just a test project area in the production
server, or a complete test installation.

Replicating process customization changes from your
test environment in you real production project area can
be performed in any of these ways:

– The Project Lead replicates all the modifications
from the test project area. For this operation, the
enterprise wide naming convention for the IDs of
process elements outlined as best practice
previously in this lab will be very useful.

– If test and production project areas are always
aligned, Project Lead can copy the entire
process source XML from test and replace the
one in production project area. This operation is
to be performed with extremely care.

We have omitted this test project area intermediate step
for the sake of workshop timing and to concentrate on
the main operations of the lifecycle.

__1. Generate the process template from the Project Area:

__a. Switch to the Jazz Admin perspective, and open the Team Artifacts view

__b. Right-click the project area Nifty Application Project and select Extract Process
Template...

__c. Give it the following values and select Finish.

__i. Name: Acme OpenUp Nifty Based

__ii. ID: openup.process.acme.nifty.ws

CLM 2012 Process Enactment Workshop Page 55

IBM Software

__iii. Summary: Acme Corporation's OpenUP Process

What if you want to reuse a template ID?

You cannot create a process template from a Project
Area and assign it an ID of a process that already exist
in the repository. On the other hand, you can't delete a
process template from the repository if a project area
exist that was created based on it.

If you want to keep one corporate process template (and
thus just one ID), you can generate a process template
from a project are with the process shown here, export it
and then re-import it giving it the existing ID; you will
then be prompted to overwrite.

Important! A process template generated from a
project area doesn't consider localization, but is
generated in the language of the project area
instantiation.

__2. Export the Process Template:

__a. Back in the Process Templates view, right-click your newly created template called Acme
OpenUp Nifty Based and select Export.

__b. Select C:\JSWorkshops\Downloads as the directory and click Finish.

Export and Import of Process Templates

You can export the process into a folder or you can export it as archive
file.

Exporting as a folder is useful if using an SCM system to version the
process template.

Exporting as an archive file is easier for sharing the process by sending it
e.g. via e-mail.

You can use the RTC Eclipse Client to import process templates from
Folder or Archive File Exports.

You can use the Templates menu in the Web Administration UI to import
process template. The Web UI only supports to import Archive Files.

CLM 2012 Process Enactment Workshop Page 56

IBM Software

Importing a Process Template

If you want to import a process template into a repository that has a
template with the same ID already, you have two options, you can
overwrite the existing template or provide the newly imported process
template a new ID.

Since you can't delete process templates that are referenced by project
areas, the cleanest solution is to overwrite the existing process template.
This helps maintaining only a short list of process templates to be used
and avoids using the old version.

Process Templates and Project Area Process

When a project area is instantiated, the chosen process template is
copied into the project area. Changing the template has no effect on the
existing project areas using the template.

If you need to maintain a common process and want to be able to align
existing project areas with it, use Process Sharing.

Process sharing allows a project area created with the “Unconfigured
Process” template to use the process definition from another project area
in which is maintained. You can change the process of that process area
and all the ones that share the process will pick up the change.

You can create a new project area with a modified process and change
the process area you share the process from to inherit the modification.

Currently the capability of modifying the process in areas that share a
process very limited. Usually customizing a domain (e.g. WorkItems)
means copying the process and loosing the sharing capability for the
domain that was overwritten. You can check Managing fine grain process
customization for work items in RTC 4.0.1

CLM 2012 Process Enactment Workshop Page 57

http://jorgediazblog.wordpress.com/2013/02/28/managing-fine-grain-process-customization-for-work-items-in-rtc-4-0-1/
http://jorgediazblog.wordpress.com/2013/02/28/managing-fine-grain-process-customization-for-work-items-in-rtc-4-0-1/
https://jazz.net/library/article/1008

IBM Software

3.3 Summary

In this lab you have successfully created a new work item type Technology Review. You have

• Created the work item type

• Added custom attributes

• Created a new workflow for the work item type

• Modified the editor presentations to make the custom attributes available for editing

• Adjusted the permissions for the attributes of the Technology Review work item type

• Created a new process template to make your changes available enterprise wide

CLM 2012 Process Enactment Workshop Page 58

IBM Software

Lab 4 Work Item Customization

This lab will step you through some advanced work item attributes customization provided by Rational
Team Concert.

Rational Team Concert work items provide a rich set of attribute types and values for different needs.
These needs may change as your process matures. For example, it is possible to:

• Create your own types for custom values such as enumerations

• Provide default values based on context such as the value of other attributes

• Reduce the number of items to select in an attribute based on context

• Populate possible values by pulling data from an external system

• Validate attributes

Lab Scenario
You are helping your team customize a Rational Team Concert process.
Your team requires

• Default values for attributes

• Calculated values and value sets for attributes

• Validators for attributes that make sure the format of the data is
correct when saving a work item.

It's your job to do all customization for the project team.

Suggested Reading

For more information please read
• Getting Started with Work Items in Rational Team Concert
• Customizing attributes in Rational Team Concert 4.0
• Customizing attributes in Rational Team Concert 3.0
• Wiki entry: Work Items attribute customization

Supported UI's

For convenience the lab will use the Eclipse Client to develop and test the
customization. However the customization works with the Eclipse as well
as with the Web UI.

Java Script Based Customization

Please note, that Java Script Based customization will be introduced in a
separate Lab.

CLM 2012 Process Enactment Workshop Page 59

https://jazz.net/wiki/bin/view/Main/AttributeCustomization
https://jazz.net/library/article/537/
https://jazz.net/library/article/1003
https://jazz.net/library/article/537/

IBM Software

CLM 2012 Process Enactment Workshop Page 60

IBM Software

4.1 Default Value Provider

Sometimes it is desirable to set reasonable defaults for some of the other work item attributes. It is often
possible to set default values for some enumeration type work item attributes in the process
configuration. However, there are several attribute types where this is not possible.

Rational Team Concert starting with 3.x provides some basic capabilities to set default attribute values.
The following sections describes default value providers that can be created with RTC 4.0.

4.1.1 Default values for attributes of type Contributor

Section Scenario

RTC work items provide attributes for user entries such as the
Owner, who is responsible for the work item. It is possible to add
additional attributes of type Contributor that contain user
information to help implement business requirements. One
common request is to be able to set a default for these kind of
attributes.

Your project has decided that each work item you create must be
initially owned by the creator of the work item. You have been given
the task to implement this.

__1. Open the RTC Eclipse Client if it is not already opened and connect to your repository. You can
use the workspace C:\JSWorkshops\Workspaces\Lab1\. Log in as user jim password jim.

__2. Go to the Team Artifacts view.

__3. Right click at the Nifty Application Project project area in the Team Artifacts view and select
Open to open the Project Area Editor for your project.

__4. Switch to the Process Configuration tab and navigate to the Configuration > Project
Configuration > Configuration Data > Work Items > Attribute Customization section.

CLM 2012 Process Enactment Workshop Page 61

IBM Software

__5. Create a new Default Value Attribute Customization Configuration.

__a. In the Attribute Customization editor, click the Add button at the bottom of the editor to
add a new Attribute Customization configuration.

__i. Enter LoggedInUser as Name of the configuration.

__ii. As Type select Default Values.

__iii. Use the Provider selection drop down box to select a provider. Read through the
list of available providers and select the provider User. The drop down list shows
the available built-in provider for the selected configuration Type. For Default
Values RTC has configurable built-in providers for several attribute types.

__iv. Click OK.

CLM 2012 Process Enactment Workshop Page 62

IBM Software

Use context menu on the type list

It is also possible to select a node in the customization
type list, right click and use the Add... context menu to
add a configuration type of a specific type.

__b. Now the new default value attribute Customization is created. To make it work it needs
additional configuration which is done in the Configuration editor to the right.

If the configuration editor is not visible, the Customization is not selected. Expand the
Default Values node if necessary to see the LoggedInUser Attribute Customization you
just created to see the configuration editor.

__i. Review the current configuration. There are two options:

▪ Select a specific user

▪ Select the Authenticated User. The Authenticated User is the user that is
currently logged in

__ii. Select the Authenticated User radio button.

__c. Save the change to the process configuration.

You have successfully created a Default Value Provider.

__6. Now the value provider needs to be configured for the attribute:

CLM 2012 Process Enactment Workshop Page 63

IBM Software

__a. In the Project Area editor Open the Configuration > Project Configuration >
Configuration Data > Work Items > Types and Attributes section.

__b. Select any work item type that has the attribute you want to configure. In our case for
example the work item type Defect

__c. Scroll down to the Attributes section, browse for the Attribute named Owned By. Right-
click the row and select Edit...

CLM 2012 Process Enactment Workshop Page 64

IBM Software

__d. The attribute editor comes up and displays the properties of the attribute. Note that the
Default Value section is now enabled. Click at the drop down list and select
LoggedInUser.

Buttons are only active if a provider is available

The drop down lists for Calculated Value, Default Value,
Value Sets, and Validators become available for
selection as soon as a matching value provider is
available.

Attribute Customization affects attributes across all
work item types

Currently Attribute Customization affects all work items
that use the attribute that is customized. That means you
can not have different behaviors for the same attribute
used in different work item types.

This limitation can be avoided in some cases using Java
Script based Attribute Customization introduced in the
next lab.

__e. Make sure that the default value provider LoggedInUser is selected and press OK.

CLM 2012 Process Enactment Workshop Page 65

IBM Software

__f. The columns should now show the new default value provider.

__g. Save your changes to the process configuration.

__7. Test the new Default Value Provider.

__a. Create a work item such as a Defect, Task, Story or Epic.

__b. Check that the Owned By attribute now defaults to the current user.

You have successfully created the default value for the owner of the work items.

CLM 2012 Process Enactment Workshop Page 66

IBM Software

4.1.2 Role Based Enumeration Default

Section Scenario

Your project would like to make sure that the default priority of a
work item is based on the role of the user.

• Work items created by the Project Manager and Architects
should default to “high” priority.

• Work items created by an Analyst or Developer should default
to “medium”.

• Other project roles should default to “low”

• For the default role, the priority should be “unassigned”.

You have been identified as the resource that can help the project
to fulfill this requirement. Though puzzled over why projects would
come up with requirements like this, you start to implement it right
away.

__1. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with
the user jim password jim. Open the Project Area editor for your Project.

__2. Switch to the Project Area editor Process Configuration tab. Open the Configuration > Project
Configuration > Configuration Data > Work Items > Attribute Customization section.

__a. Press the Add button at the bottom of the editor to add a new configuration.

__i. As Name enter Default Priority by Role.

__ii. As Type select Default Values.

__iii. As Provider select Role Based Enumeration Default from the drop down list.

__iv. Select OK

__b. The Editor for the Attribute Customization configuration should now show the Details and
the Configuration editor section editor to the right.

CLM 2012 Process Enactment Workshop Page 67

IBM Software

__i. Use the Select... button and select the enumeration named priority.

__c. The configuration editor now shows the roles available in the order defined in the
process configuration.

Select the default priority Literal for each role.

__i. Project Manager and Architect: High priority

__ii. Analyst and Developer: Medium priority

__iii. Stakeholder and Tester: Low priority

__iv. Default and other roles: Unassigned.

CLM 2012 Process Enactment Workshop Page 68

IBM Software

__d. The configuration should now look as follows. You might have additional roles that are
not presented in the screen shot below.

__e. Save the process configuration with your changes.

__3. Now the Attribute customization needs to be applied to the Priority attribute of the work items:

__a. On the Process configuration editor navigate to the Work Items > Types and Attributes
section.

__b. Select a work item type that has the priority attribute. In our case for example the work
item type Defect.

__c. Scroll down to the Attributes section, browse for the Attribute named Priority. Right-click
the row and select Edit...

CLM 2012 Process Enactment Workshop Page 69

IBM Software

__d. On the Attribute Editor, the Default Value selection drop down button should be enabled.
Click at the button and select the Attribute customization Default Priority By Role.

__e. Select OK.

__f. Save the changes to the process configuration.

__4. Test the default value provider

__a. In the Project Area editor switch to the Overview tab.

In the Members section select the user Jim and click the Process Roles... button to see
the process roles assigned to him. The user Jim has the role Project Manager as the
primary assigned role:

CLM 2012 Process Enactment Workshop Page 70

IBM Software

__b. Create a work item and check if the priority is set to the default value (High) expected for
this role.

__5. Test how multiple roles work

__a. In the Project Area editor switch to the Overview tab.

__i. In the Members section select the user Jim and click the Process Roles... button
to see the process roles.

__ii. Select the Developer role in the Assigned Roles column and use the Up button
to move it to the top of the list.

__iii. Save the project area.

__b. Create a work item of type Defect.

__i. Check the priority.

The default priority is now set to the default for the Developer role (Medium)
which is your primary role now.

__6. Change the roles setting for user Jim back to the original settings.

__a. In the Members section select the user Jim and click the Process Roles... button to see
the process roles.

__b. Select the Developer role in the Assigned Roles column and use the Down button to
move it to the second position of the list. See __4. __a. above for the desired setup.

__c. Save the changes to the Project Area Process configuration.

You have now successfully created and configured a role based default value provider. In addition you
have observed how important the order of roles can be when configuring them in RTC.

CLM 2012 Process Enactment Workshop Page 71

IBM Software

Important RTC permissions and behavior lookup

For more information on how permissions lookup and the
related operational behavior lookup works, see these
artciles which are still valid for RTC 4.x

• Process permissions lookup in Rational Team
Concert 2.0

• Process behavior lookup in Rational Team Concert
2.0

Understanding these mechanisms is crucial for being
able to manage process permissions and behavior in
RTC.

CLM 2012 Process Enactment Workshop Page 72

https://jazz.net/library/article/292
https://jazz.net/library/article/292
https://jazz.net/library/article/291
https://jazz.net/library/article/291

IBM Software

4.1.3 Optional: Review the other available default value providers.

Section Scenario

Curious about which other default value providers are available,
and how they work, you decide to have a closer look.

This section is optional and you can skip it.

__1. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the
user jim password jim. Open the Project Area editor for your Project.

__2. Switch to the Project Area editor Process Configuration tab and open the Configuration >
Project Configuration > Configuration Data > Work Items > Attribute Customization
section.

__3. Add a new Default Value in the Attribute Customization editor.

__a. Select Default Value in the editor. Use the Add... button at the bottom of the page to add
a new Attribute Customization configuration.

__b. Select Default Value as Type.

__c. Verify you have the following Providers available:

__i. Boolean

__ii. Category

__iii. Duration

__iv. Enumeration List

__v. Iteration

__vi. Multi-Line HTML

__vii. Multi-Line Text

__viii. Number

__ix. Operating System

__x. Role Based Enumeration Default

__xi. Script Based Default

__xii. Single Line HTML

CLM 2012 Process Enactment Workshop Page 73

IBM Software

__xiii. Single Line Text

__xiv. User

__xv. User List

__xvi. Wiki

__4. Create a Default Value provider for all other available types except Script Based Default. Note:
We will look into script based value provider in a separate Lab.

__a. As name use the type name and append “default”. For example Enumeration List
Default.

__b. For each of the default value providers check out the Configuration Editor section.

• For the typical default values it is possible to enter some data and in several cases also to pick
valid values from the project area. List types allow to select multiple values.

• The role based enumeration default allows to configure default values based on the role of the
user that creates the work item. See the next section.

• The type Operating System does not have an editor. To configure the values you need to edit the
process XML source. See:
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Operating_System_default_value. In
addition it works only with the Eclipse client. You can however create your own enumeration for
this purpose.

Limitations

There are some limitations for which default values are
selectable for specific attribute types. For example multi
Line HTML only works for Large HTML attributes and not
for Medium HTML attributes.

4.1.4 Summary

The previous section showed how to create Default Value providers for RTC work item attributes. You
have learned how to use the out of the box default value providers and successfully implemented some
common examples.

CLM 2012 Process Enactment Workshop Page 74

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Operating_System_default_valueI

IBM Software

There is a default value provider type called Script Based Default. This type will be handled with all other
Script based value provider types in a separate Lab.

CLM 2012 Process Enactment Workshop Page 75

IBM Software

4.2 Value Sets

Sometimes it is necessary to be able to have more control about values that can be chosen for an
attribute. RTC provides some options to do this by defining Value Sets.

4.2.1 Dependent Enumerations

When working with several enumerations, sometimes certain combinations don't make sense. Often one
attribute value limits which values should be selectable in another attribute. This can be done by creating
Dependent Enumeration Value Sets. The setup of dependent enumerations is fairly straightforward.

Section Scenario

Your project would like to provide the users with an easier way to
choose from some of the attribute values available in the work
items. They would like to provide the users with combinations of
values that make sense in the context, to save the users having to
think about it themselves.

Because of your success so far, you have been elected to help the
project with this task.

The current process contains few enumerations to work with.
Therefore the next steps are only meant to provide an overview.

Suggested Reading

If you need more examples please consider reading this article:
https://jazz.net/library/article/537/

__1. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the
user jim password jim. Open the Project Area editor for the Nifty Application Project.

__2. Switch to the Project Area editor Process Configuration tab and open the Configuration >
Project Configuration > Configuration Data > Work Items > Attribute Customization
section.

__3. Add a new Value Set in the Attribute Customization editor.

__a. Select Value Sets in the editor. Use the Add... button at the bottom of the page to add a
new Attribute Customization configuration.

__i. For Type select Value Sets if it is not already selected.

CLM 2012 Process Enactment Workshop Page 76

https://jazz.net/library/article/537/

IBM Software

__ii. Select Dependent Enumeration for Provider.

__iii. Name the configuration Priority by Severity. Select OK.

__b. Configure the Value Set in the Configuration section of the editor to the right.

__i. Select Severity (Enumeration) as Source Attribute.

__ii. Select Priority as Dependent Enumeration

__c. Now you need to map the Dependent Enumeration values to the Source Attribute Values.

In this step you define which values on the right in the Dependent enumeration are
applicable if the value on the left is selected.

This is just an example that shows the principle. We want to make sure that the priority
for the work item is consistent with the severity of the work item.

__i. Map the Severity value for the Default Value Set. The Default value set is the set
of values that is allowed for the dependent enumeration for values of the source
that are not specifically configured.

__a. Select Default Value Set in the source attribute values.

__b. Select the Low, Medium, High values as allowed in the Dependent
Enumeration value list.

CLM 2012 Process Enactment Workshop Page 77

IBM Software

__ii. Map the other Source Attribute Values

__a. Leave the source value unclassified unspecified

__b. Map the source value Minor to Low and Medium

__c. Leave the source value Normal unspecified

__d. Map the source value Major to Medium and High

__e. Map the source value Critical to Medium and High

__f. Map the source value Blocker to High

__d. Save the changes to the process configuration.

__4. Now configure the value set for the attribute Priority in the Types and Attributes Section.

__a. Open the Work Items > Types and Attributes section.

__b. Select the work item type Defect and scroll down to the Attributes section.

__c. Double-click the Priority attribute to open the Attribute properties editor.

__d. For Value Set, select Priority by Severity.

__e. In the Dependencies section, select “+” and add the Severity attribute. This is necessary
to enable the Value Set provider and make it recalculate its value with the value of the
severity attribute in case this changes.

Attribute Customization rely on dependent attributes

If a workitem customization such as a value provider
depends on changes of other attributes, it is necessary
to add the dependent attributes to the dependency list. If
this is neglected, the value provider might not work as
expected.

CLM 2012 Process Enactment Workshop Page 78

IBM Software

The attribute should look like below

__f. Click OK and Save the changes you just did.

__5. Test your Attribute Customization

__a. Open the overview tab of the project area editor and look at the user jim to check if the
Project Manager role is the primary role. The first role in the process roles column is the
primary role.

__b. Create a Defect to test the change. As already mentioned, the customization affects the
attribute across all work item types. So any work item type that has this attribute will be
affected.

CLM 2012 Process Enactment Workshop Page 79

IBM Software

__c. Note that the default severity is Normal. The default priority is high due to your
customization of the priority. The value is valid for our value set.

__i. Change the Severity to Minor

Note that an indicator in front of the priority now shows that the value does not
conform your value set.

__ii. Change the Priority to Low.

Click at the Priority attribute again. Now only Medium and Low are valid choices.

__iii. Change the Severity attribute to Blocker. The Priority attribute set to Low is
flagged as invalid again.

__iv. Try changing the Priority attribute.

There is only one choice available due to your value set.: High. Low is only
displayed because it is the current value. Choose High as the new Priority.

__d. Add the other required values and save the work item:

CLM 2012 Process Enactment Workshop Page 80

IBM Software

__i. The save operation prevents you from saving the work item with a wrong
enumeration value.

Save succeeds with RTC 4.0

Due to defect 216723 RTC 4.0 allows saving values that
are in violation with the Dependent Enumeration value
set. This defect is fixed in 4.0.0.1.

You might also see unexpected validation error
indicators upon saving the work item with RTC 4.0 as
described in defect 216173 which is also fixed in RTC
4.0.0.1.

__e. Assign a valid value to save the work item in case the save fails or abandon saving the
work item.

You have just successfully added a Dependent Enumeration value set.

CLM 2012 Process Enactment Workshop Page 81

https://jazz.net/jazz/web/projects/Rational%20Team%20Concert#action=com.ibm.team.workitem.viewWorkItem&id=216173
https://jazz.net/jazz/web/projects/Rational%20Team%20Concert#action=com.ibm.team.workitem.viewWorkItem&id=216723

IBM Software

4.2.2 HTTP Filtered Value Set

HTTP Filtered Value Sets allow you to provide values from external sources, typically from an XML
Document that is published on a web server. The value set provider is very flexible and allows you to
specify which data to extract from the XML Document using XPath. A filter option allows you to handle
longer value sets. Some post-processing allows you to compose data from several result columns.

Section Scenario

Your project now wants an attribute to support departments
affected by a potential technology adoption. The attribute needs to
be filled with some data from an external source.

Your project wants to use the data from another in-house
application as the choice list in the work item attribute. The data is
made available by a server in XML format.

You have been asked to help the project with this task.

Example Data

The HTTP Filtered Value Set requires a valid URL that
provides XML information. It is not possible to use a local
file and refer to it using the file URI scheme like
file://localhost/C/:/temp/somefile.xml.

• For the Lab we use data that is provided using a
custom WAR file that is deployed into the Jazz
Team Server.

• You can also publish your own data easily using
Apache. Install Apache as described in this article
and place an XML document into the folder
<Apache-Install_Dir>/htdocs. You can also provide
a different folder as described in the article
mentioned above.

__1. Download the file PEWEnactmentData.war from the workshop on Jazz.net to
C:\JSWorkshops\Downloads in case you have not already done so.

__2. First deploy the XML data. To be able to deploy it on an application server such as Tomcat, the
data is wrapped into a WAR file that can be deployed.

__a. Make sure the RTC Server is still running

CLM 2012 Process Enactment Workshop Page 82

https://jazz.net/library/article/797
http://en.wikipedia.org/wiki/File_URI_scheme
http://www.w3.org/TR/xpath/

IBM Software

__b. Copy the file PEWEnactmentData.war from the download folder
C:\JSWorkshops\Downloads into the folder
C:\JSWorkshops\IBM\JazzTeamServer\server\tomcat\webapps.

__c. Open the Tomcat console and make sure the file is deployed.

__d. In your Browser type https://clm.process.ws/PEWEnactmentData/ and make sure the
browser shows the index page.

__e. Follow the link to open the XML file.

__3. Now open the Eclipse Client if it is not already opened and connect to your repository. Log in
with the user jim password jim. Open the Project Area editor for your project.

__4. Switch to the Project Area editor Process Configuration tab and open the Configuration >
Project Configuration > Configuration Data > Work Items > Attribute Customization
section.

__5. Add a new value provider in the Attribute Customization editor.

__a. Select Value Sets and use the Add.. button to create a new configuration.

__i. For Type select Value Sets if it is not already selected.

__ii. Select HTTP Filtered Value Set as the Provider.

CLM 2012 Process Enactment Workshop Page 83

https://clm.process.ws/PEWEnactmentData/

IBM Software

__iii. As Name for the value set enter Department Provider. Select OK.

__6. Now you need to configure the Value Set in the Configuration section of the editor.

The basic steps are to provide a URL to get the data and XPath expressions to select the data
from the XML source and define how the data is displayed and returned to the work item.

__a. First you need to provide the URL to the data source. Enter
“https://clm.process.ws/PEWEnactmentData/makers.xml” in the XML data source URL
configuration property.

__b. Maximize the editor window by double clicking on the tab, or scroll the configuration
editor window to the lower right corner until you see the Test button.

__c. Press the Test button.

CLM 2012 Process Enactment Workshop Page 84

IBM Software

__d. A window should come up. You will see an error. Hover over the error message to see
the complete message displaying “Problems accessing
'https://clm.process.ws/PEWEnactmentData/makers.xml': peer not authenticated”

__e. This error message is due to the default certificate being used with Tomcat.

__f. Check the Ignore invalid SSL certificates at the lower left of the provider configuration
and press the test button again.

CLM 2012 Process Enactment Workshop Page 85

IBM Software

__i. You should still see an error, because the configuration is not yet correct.

The output should look like below and using the Show/Hide Log button should
provide you with the XML that was fetched if you scroll down a bit.

__ii. If you see the error shown below and the log does not contain any XML, check
the URL. You probably have a leading or trailing space in the URL. In production
usage you might also want to check the Authentication settings and provide
credentials, if required.

__iii. If you can retrieve the XML, you can continue. Close the test window and save
the process configuration.

CLM 2012 Process Enactment Workshop Page 86

IBM Software

__7. In order to be able to use XPath to select the data from the XML file you need to understand the
XML structure.

XPath tutorial and documentation

XPath is a language that allows you to navigate in XML.
It allows to specify the path across the XML structure
and to access elements and attributes. There are several
tutorials available online. For example see
http://www.w3schools.com/xpath/ if you need to better
understand how it works.

__a. Open https://clm.process.ws/PEWEnactmentData/makers.xml in a browser. It should
look like:

__8. As described in Wikipedia, XPath is a query language for selecting nodes from XML and to
compute data from the XML data. From the above data we want to look at the data in the node
entries.

The expression that selects the node data is //xml/node. It selects the nodes that matches the
path selection xml/node in the document wherever they are. See
http://www.w3schools.com/xpath/xpath_syntax.asp for more information.

__a. Return to the Process Configuration view in RTC. Enter //xml/node in the Row XPath
expression configuration property.

__b. Now it is necessary to select the data from the node elements. You want at least the data
in the <make> element. Enter ./make into the Column XPath expressions property.

CLM 2012 Process Enactment Workshop Page 87

http://www.w3schools.com/xpath/xpath_syntax.asp
http://en.wikipedia.org/wiki/XPath
https://clm.process.ws/PEWEnactmentData/makers.xml
http://www.w3schools.com/xpath/default.asp

IBM Software

__c. Push the Test button in the lower right corner again.

You should now see some values

Troubleshooting

During creation of this workshop there were cases when
the initial display did not work as expected. This seems
to be related to the Column identifiers configuration
property value. Please make sure to provide this value.
Save the process configuration and try it again. The
issue vanished after some tries.

__d. Close the test window and save the process configuration.

__9. The values displayed do not yet appear very user friendly. You want to work on the data to
create a more usable value.

__a. As visible column identifier enter Department into the Column identifiers configuration
property. This is used to determine how many columns are available.

__b. Currently we are only getting one column of data in a row. Enter ${0} Department into the
Entry label format configuration property. This expression takes the column value, for
example Acura, and adds the fixed string Department to it. This calculated string will be
returned to the attribute making up our department names.

__c. Check the Apply filter string to values received from the data source option to allow
users to reduce the choices.

__d. Leave Sort values received from data source unchecked.

__e. Leave Ignore invalid SSL certificates checked.

CLM 2012 Process Enactment Workshop Page 88

IBM Software

__f. You don't need to configure the Authentication Method for this example.

Ignore invalid SSL certificates

In case the data source has a wrong SSL certificate this
option allows you to ignore the certificate error and to
retrieve the data despite the error.

Sort values received from data source

This option allows you to sort data sources that are not
sorted before they are displayed.

Authentication Method

The Authentication method can be used for data sources
that require authentication. The value provider would
access the site using the specified authentication
method and the credentials.

__g. The configuration should now look like below.

__h. Test the configuration using the Test button in the lower right corner of the Attribute
customization editor again. You should now see a 'Department' postfix in the displayed
values.

__i. Save the changes you just did to the process configuration.

__10. Now it is necessary to configure the attribute to use the HTTP filtered Value Set.

CLM 2012 Process Enactment Workshop Page 89

IBM Software

__a. Open the Project Area editor switch to the Process Configuration tab and open the
Configuration > Project Configuration > Configuration Data > Work Items > Types
and Attributes section.

__b. Select the Technology Review work item type. It is the only work item type with the
Affected Department Attribute.

__c. Scroll down to the Attributes section. In the Attributes section check the “Show only
custom attributes” checkbox to narrow down your search.

__d. Find the Affected Departments attribute and press the Edit button.

CLM 2012 Process Enactment Workshop Page 90

IBM Software

__i. Use the drop down box button Value Set and select the Department Provider we
just created. Select OK.

__ii. Save the changes to the process configuration but leave the Project Editor open.

__11. Test the HTTP Filtered Value Set you created.

__a. Create a new work item of type Technology Review.

__b. Switch to the Tech Review Details tab

__c. In the Adoption Cost Estimations section look at the Affected Departments attribute.

CLM 2012 Process Enactment Workshop Page 91

IBM Software

Troubleshooting
The attribute should show an Add... button. If the
button does not show up, close the work item and
repeat the steps from 10. Make sure to save the
changes in the project area.

__i. Press the Add... button and wait for the data to be retrieved. After a moment the
Select a Value Window should show a window with a filter on top and some
values below.

__ii. Type 'I' (capital 'i') into the filter. Your choices in the Values field should now be
reduced to entries starting with an 'I'. Select the International Department.

__d. Repeat the steps above and add the Mini Department.

__12. Close the work item, you don't have to save it.

You have just successfully configured your first HTTP Filtered Value Set.

CLM 2012 Process Enactment Workshop Page 92

IBM Software

4.2.3 Refine the HTTP Filtered Value Set

Section Scenario

You are not yet satisfied with the result. You want the department
ID to be part of the value.

__1. Open the Project Area editor for your Project.

__2. Switch to the Process Configuration tab and open the Configuration > Project Configuration >
Configuration Data > Work Items > Attribute Customization section.

__a. Open the configuration editor for the Department Provider Value Set you just created.
Expand the node Value Set and select the Department Provider.

__b. You want to modify the Column XPath expression to show an additional column. See the
XPath Syntax for more information. You can add an additional column using the pipe
symbol | and “./id” selects the ID in the XML. To make it more interesting we want to use
operators to calculate a number using the ID.

__i. Enter the XPath expression ./make | (200-./id) to the Column XPath expression
property, to get two column values as result. The second column contains a value
where the Id of the XML is subtracted from the constant value 200. The pipe
symbol | separates the columns.

__ii. Add | Identifier into the Column identifiers property.

__iii. Add a ${1} statement to the Entry label format property, to insert the new column
value in the front of the row.

CLM 2012 Process Enactment Workshop Page 93

http://www.w3schools.com/xpath/xpath_operators.asp
http://www.w3schools.com/xpath/xpath_operators.asp
http://www.w3schools.com/xpath/xpath_syntax.asp

IBM Software

__iv. Your configuration should look like below:

__v. Save the process configuration changes.

__vi. Test the new configuration using the Test button at the bottom of the editor page.

__vii. The result now shows a number in front of the department name counting down
from 200-1.

The list is no longer alphabetically sorted.

In addition using the filter no longer works as expected. Setting a filter 12 shows
all entries starting with 12, but providing a character shows nothing.

__c. To get sorting back, close the test window and check the property 'Sort values received
from data source' to get it sorted again.

__i. Test the setting. Now it is sorted by the leading number.

__d. You want to get the filtering back, regardless how the output will finally look like and you
would like to filter by department name. The filter value can be passed to the XML data
source URL and the Row XPath expression as ${filter} and used there.

CLM 2012 Process Enactment Workshop Page 94

IBM Software

__i. In the Row XPath expression property enter //xml/node[starts-with(./make, '$
{filter}')]

This selects only the node elements that have a “make” element that starts with
the string from the filter.

Clear the property 'Apply filter string to values received from data source'. Your
data source is already filtered and leaving this checked would result in no output
because the filter would filter the whole entry label.

Your Configuration should look like this now:

__ii. Test the value set provider and enter 'I' (capital 'i') as filter. The values displayed
should only show departments starting with 'I'. If you type a small 'i' character, the
result will be empty. Upper or lower case makes a difference.

Ignore Case Filter

With XPath 1.0 there seems to be no way to use the filter
with ignore case. It also does not support wildcard
characters. It would however be possible to use the
XPath expression contains() or other options as
described here instead of starts-with().

__iii. Close the test window.

__e. You finally decide you like the department number but would rather have it at the end of
the string and not modified.

__i. Change the Entry Label format property to ${0} Department (${1})

__ii. Remove the calculation and pass the original ID by changing the Column XPath
expressions property to ./make | ./id

CLM 2012 Process Enactment Workshop Page 95

http://www.w3.org/TR/xpath/

IBM Software

__iii. Leave all other settings. The configuration should look like

__f. Use the Test button to test if the configuration works. You should get something like the
following

__3. Close the test window and save the process changes to the project area to keep your settings.

You have successfully created a HTTP based filtered value set provider.

CLM 2012 Process Enactment Workshop Page 96

IBM Software

4.2.4 Additional Information for HTTP based filtered value providers

There is more you can do with the filtered value provider. You can pass the value and the label of any
attribute of the current work item in the XML data source URL and the Row XPath expression. See the
help topic for more details.

If the XML data source accepts more parameters, it would be possible to pass an attribute value, for
example a technology name, using another custom attribute of the Technology Review work item type.
For example this string could be passed:

http://cars.flashmx.us/makes?${com.acme.openup.workitem.attribute.techname}

The Authentication for the HTTP based filtered value provider can be configured and supports OAuth.
This allows you to use any OSLC source that can be contacted and is correctly set up. For example, you
can use a friend relationship as XML data source. See more details here:

http://jorgediazblog.wordpress.com/2012/06/27/work-item-customization-httpconector-and-oauth-in-rtc-4-
0-for-oslc/

Accept Statement is required

The HTTP based filtered value posts a specific Accept:
application/xml statement in the request header. If the
web server exposes an XML page but does not accept
the request header you will see an error. See below.

For example http://www.w3schools.com/xml/cd_catalog.xml returns

CLM 2012 Process Enactment Workshop Page 97

http://www.w3schools.com/xml/cd_catalog.xml
http://jorgediazblog.wordpress.com/2012/06/27/work-item-customization-httpconector-and-oauth-in-rtc-4-0-for-oslc/
http://jorgediazblog.wordpress.com/2012/06/27/work-item-customization-httpconector-and-oauth-in-rtc-4-0-for-oslc/
https://jazz.net/help-dev/clm/topic/com.ibm.team.workitem.doc/topics/t_configuring_http_filtered_value_set.html

IBM Software

4.2.5 Role Based User List

It is sometimes interesting to be able to have additional attributes that store one or more users that have
a special relationship to a work item. This can be done by creating attributes of the type “contributor” or
“contributor list”. Sometimes it is convenient or required to have a limited list of users to choose from.
This is what the role based user list helps with.

Section Scenario

Your team has decided that it is desirable to assign an architect to
be responsible for each Technology Review work item.

You have been asked to help the project with this task.

Please note that the Value Set Provider created in this lab only
works for attributes of type Contributor. It does not work for
attributes with the type Contributor List. Enhancement 222235
requests this capability.

__1. Open the Eclipse Client, if it is not already opened, and connect to your repository. Log in with
the user jim password jim. Open the Project Area editor for your Project.

__2. Switch to the Project Area editor Process Configuration tab and open the Configuration >
Project Configuration > Configuration Data > Work Items > Attribute Customization
section.

__3. Select Value Sets in the editor. Use the Add... button at the bottom of the page to add a new
Attribute Customization configuration.

__a. For Name enter Responsible Architect.

__b. For Type make sure to select Value Sets.

__c. As Provider select Role Based User List.

__d. Press the OK button.

__e. Now configure the new Value Set.

CLM 2012 Process Enactment Workshop Page 98

https://jazz.net/jazz/resource/itemName/com.ibm.team.workitem.WorkItem/222235

IBM Software

__i. In the configuration editor press the Add Role... button to add a role
configuration. In the configuration dialog you can select a process area where the
role comes from and the role to select the user.

__ii. For the configuration Role Comes From choose Work Item's Project Area.

Roles Available In The Selection

Please note: If you choose the “Work Item's Project
Area” or “Specific Team Area...” only the roles defined in
the chosen process area are selectable.
If you select “Work Item's Team Area” all roles, including
roles added in different Team Areas, are selectable.

Note also that selectable roles for the “Specific Team
Area...” option includes the roles inherited from parent
process area as well.

__iii. From the available roles select Architect.

__iv. Click OK.

__v. It is possible to add additional configurations for where the role comes from and
which role to choose by repeating the previous steps.

__f. Save the changes to the process configuration.

__4. Now it is necessary to configure the attribute to use the Role Based User List. Open the
Configuration > Project Configuration > Configuration Data > Work Items > Types and
Attributes section.

__a. Select the Technology Review work item type. Scroll down to the Attributes section.

CLM 2012 Process Enactment Workshop Page 99

IBM Software

__b. In the Attributes section check the Show only custom attributes checkbox.

__i. Select the custom attribute Responsible Architect and click Edit....

__ii. In the Custom Attribute editor for the Responsible Architect attribute select the
Responsible Architect Role Based User List using the Value Set drop down
button.

__iii. Click OK and save the process changes to the process configuration.

__5. Check the project area Members and make sure that one or more members have the Architect
role. If you add some Architect Roles to users, make sure to save the changes before you
continue.

__6. Open a work item of type Technology Review. If you have such a work item already open close it
first and re-open it to make sure the value set is available to the editor.

__a. Open the Tech Review Details tab of the work item.

CLM 2012 Process Enactment Workshop Page 100

IBM Software

__b. Click on the Responsible Architect attribute. The drop down list should show the users
available in the project area with the role Architect.

__c. You can still assign other users using the More... button at the end of the drop down.

__7. You don't have to save the work item at this time.

You have just successfully implemented a Role Based User List!

CLM 2012 Process Enactment Workshop Page 101

IBM Software

4.2.6 Summary

In the previous section you learned how to create Value Sets for RTC work item attributes. This allows to
reduce the number of selectable values and select from external data and makes your process more
streamlined for your requirements.

There is a value set provider type called Script Based Value Set. This type will be handled with all other
Script based value provider types in a separate Lab.

CLM 2012 Process Enactment Workshop Page 102

IBM Software

4.3 Validators

Section Scenario

Your team maintains a block of effort and cost estimation values in
the Technology Review work item type. Your team wants to track
and calculate some values to estimate total cost for certain
technologies that are reviewed.

Currently a user can type anything into these values and there is
no validation of the format available. The attributes are realized as
String to give more flexibility, but it is probably tough to get a
reasonable number value out of any possible string, such as “Foo *
Bar + Server”. The team is nervous about that and would like to
make sure the data is correct and consistent.

Since you have been so successful in implementing all the other
requests, your project has learned to rely on you. They ask you to
solve the issue and implement the solution. So you head to your
cubicle to find out what options you have.

It is a typical requirement that work item attributes can only have certain values. Specially for attributes of
string types it is often necessary to validate that the value follows some pattern.

Currently the following attributes are maintained in the Technology Review work Items. These attributes
are supposed to be used with an automated calculation.

The way this is supposed to work is someone enters an effort estimation and an average cost for the
Technology adoption effort. The Estimated Investment is used to track infrastructure cost the company
has to put into adopting the new technology. So, ultimately you want to be able to show:

Total Cost = Estimated Effort * Average Cost + Estimated Investment

Rational Team Concert provides validators to validate attribute values and make sure they conform to a
special format.

__3. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the
user jim password jim. Open the Project Area editor for the Nifty Application Project.

__4. Switch to the Project Area editor Process Configuration tab and open the Configuration >
Project Configuration > Configuration Data > Work Items > Attribute Customization
section.

CLM 2012 Process Enactment Workshop Page 103

IBM Software

__5. Use the Add... button to add a new Attribute Customization.

__a. Select Validators as the Type.

__b. Inspect the configuration property Provider. You can choose from Number Range,
Regular Expression and Script based Validation.

__i. Basically you could try using a number range as validator.

The number range checks if a number is in a certain range.

Unfortunately this validator works only for number types and is therefore not
usable in the current example where all attributes are of a string type.

So you need to select Regular Expression as the Provider. The regular
expression works with string types.

__c. Change the Name to Effort Validator and click OK.

__d. On the configuration editor you can now configure your regular expression. For some
information on regular expressions have a look at this Wikipedia link. It refers to
additional tutorials.

__i. Choose an Error in the Decoration Icon property.

CLM 2012 Process Enactment Workshop Page 104

http://en.wikipedia.org/wiki/Regular_expression

IBM Software

__ii. You want to accept input like 1d for one day and we want to support weeks,
months etc. In the Message configuration property enter

Format: Any number optionally followed by m, w, d, h for month, weeks, days...

__iii. In the Regular Expression configuration property enter

(\d*m)|(\d*w)|(\d*d)|(\d*h)|(\d*)

It validates to true for inputs with a number prefix and allow to input m, w, d, h or
leave the suffix out.

__iv. Check the Case sensitive checkbox. We only want to accept small characters.

__a. Enter some samples in the sample text input to test your expression and
validate that you get an error for values that are wrong.

__b. If you hover over the error marker you get to see the description.

__v. Save the changes to the process configuration.

__e. Create another Validator for the cost attributes.

__i. Enter Cost Validator as Name.

__ii. Choose Validator as Type.

__iii. Use the Regular Expression as Provider.

CLM 2012 Process Enactment Workshop Page 105

IBM Software

__f. Configure the validator.

__i. Choose Error in the Decoration Icon property.

__ii. You want to accept input like 1M for one million, 100T for 100.000 and any
number. In the Message configuration property enter

Format: 1M, 4T, any number...

__iii. In the Regular Expression configuration property enter a pattern similar to the one
you already used

(\d*M)|(\d*T)|(\d*)

__iv. Make sure the Case sensitive checkbox is selected.

__v. Test the validator by typing in some valid and invalid values.

__g. Save the process change to the Project Area process configuration.

__6. To configure the attributes, open the Configuration > Project Configuration > Configuration
Data > Work Items > Types and Attributes section in the Process Configuration tab of the
Project Area editor.

__a. Select the Technology Review work item type, scroll down to the Attributes section,
select the Show only custom attributes check box.

CLM 2012 Process Enactment Workshop Page 106

IBM Software

__i. Double click at the Estimated Effort attribute to open the Custom Attribute Editor.
Use the Validators selection drop down button, select the Effort Validator. Then
select OK.

__b. Double click at the Cost attribute to open the Custom Attribute Editor. Use the Validators
selection drop down button, select the Cost Validator. Select OK.

__c. Double click at the Estimated Investment attribute to open the Custom Attribute Editor.
Use the Validators selection drop down button, select the Cost Validator. Select OK.

__d. Save the process change.

__7. Test your Attribute Customization

__a. Create a work item of type Technology Review. You have to close and re-open the work
item, if you want to use an existing one.

__b. Enter the summary.

__c. Go to the Tech Review Details tab.

__i. Enter some text that does not match the valid formats

CLM 2012 Process Enactment Workshop Page 107

IBM Software

__ii. An error shows up in front of the attributes.

__iii. Press the Save button.

__d. The save happens despite of the errors.

The Validator does not prevent the work item from
being saved

The validation itself does not prevent the work item from
being saved. If you want a validation error to prevent the
work item from being saved, you have to configure a
precondition for the validation and the validations have
to return an error. Enablement of this precondition is
showed in following steps.

__8. Configure the precondition to prevent the work item from saving in case the validation of an
attribute fails.

__a. On the Process Configuration tab of the Project Area editor open the Configuration >
Team Configuration > Operation Behavior section.

CLM 2012 Process Enactment Workshop Page 108

IBM Software

__b. In the Operation Behavior editor section, scroll down and find the Work Items > Save
Work Item (server) operations for the role Everyone in the related table column.

__i. In the column for the role Everyone click the element in the Save Work Item
(server) row.

__ii. Make sure the check box in front of “Preconditions and follow-up actions are
configured for this operation” is checked and press the Add... button.

__iii. Enter *Valida in the search field to find the Attribute Validation precondition.

__iv. Select the Attribute Validation precondition and press OK.

__v. You can specify a different name and a more descriptive error message text if you
like. Other than that there are no configuration options.

__vi. Save the process configuration change to the project area.

CLM 2012 Process Enactment Workshop Page 109

IBM Software

__c. Go back to the work item that has the validation errors.

__i. Do a small change for example in the Summary attribute. Press the Save button
again.

Now the save operation fails with an error. This happens in the clients as well as
in the Web UI.

__ii. Modify the values for the attributes Estimated Effort, Estimated Investment and
Cost to values that match the desired formats. For example use 20d, 10T and 1M
as input. Press the Save button.

__iii. Now the work item saves without errors

__9. Try other decoration icons such as Warning in your validator.

__a. Open the Project Area editor switch to the Process Configuration tab and open the
Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section.

__i. Expand the Validators node in the editor.

__ii. Open the Effort Validator. Switch the Decoration Icon setting from Error to
Warning.

__iii. Save the changed process configuration.

__b. Switch to your work item.

If using the Web UI close the work item editor and open it again, so that the UI is able to
recognize the change.

__i. Type a wrong value into the Estimated Effort attribute. Notice the warning symbol
showing up.

__ii. Press the Save button.

__iii. The save proceeds without an error.

This is due to the Warning level.

CLM 2012 Process Enactment Workshop Page 110

IBM Software

Only validations of level error prevent from saving!

The Attribute Validation precondition only prevents
saving for validations that are set to level error.

The Attribute Validation precondition is global!

The Attribute Validation precondition, if configured, will
work for all work item types that have the attribute. Use
other levels such as warning or information if the
precondition is configured.

Operation Behavior can be complex!

Operation behavior is configured by role and what is
configured at which role will define which rules apply. For
example operational behavior does not accumulate
across user roles. E.g. the operational behavior
configured for the highest role that is found will be taken.

Important information!

Please carefully read the articles about

• Process behavior lookup and

• Process permissions lookup

in RTC to understand which rules apply. The articles are
for RTC 2.x but the content is still valid.

__c. Open the Effort Validator again. Switch the Decoration Icon setting back from Warning to
Error.

__d. Switch the Effort Validator back to Error level.

__e. Save the process configuration.

CLM 2012 Process Enactment Workshop Page 111

https://jazz.net/library/article/291
https://jazz.net/library/article/292%20

IBM Software

4.3.1 Summary

In the previous section you learned how to create attribute validators for RTC work item attributes and
how to prevent a work item from saving in case a validation fails.

There is a Validation provider type called Script Based Validation. This type will be handled with all other
Script based value provider types in a separate Lab.

CLM 2012 Process Enactment Workshop Page 112

IBM Software

4.4 Summary

In this lab you learned how to use Attribute Customization to make using work items easier and
enforce consistence of values or formats. To do so you learned how to:

• Create Default Value Providers

• Create Calculated Value Providers

• Create Value Sets

• Create Validators and how to prevent saving invalid values

CLM 2012 Process Enactment Workshop Page 113

IBM Software

Lab 5 Work Item Customization With JavaScript

This lab will step you through some advanced work item attribute customization provided by Rational
Team Concert.

Rational Team Concert work items provide a rich set of attribute types and values for different needs.
These needs may change as your process matures. The last lab showed how you can easily
customize work items and values using declarative customization available in RTC. Sometimes the
built in customization options still don't provide the desired capabilities. This lab will show how
JavaScript Based Attribute Customization can add even more flexibility by:

• Providing default values based on the context of values of other attributes

• Calculating attribute values based on other attributes values

• Validating attribute values based on other attribute values

• Providing attribute values available for selection based on context

• Making attribute values required or optional based on context

• Making attribute values read only based on context

Lab Scenario

You are helping your team to customize a Rational Team Concert
process. Your team requires more complex customization. Since you are
tasked to do all customization for the project team, you will learn about
JavaScript based customization such as:

• Default Values for attributes

• Calculated Values and value sets for attributes

• Conditions for attributes

• Validators for attributes that make sure the format of the data is correct
when saving a work item.

Suggested Reading

For more information please read
• Getting Started with Work Items in Rational Team Concert
• Customizing attributes in Rational Team Concert 4.0
• Customizing attributes in Rational Team Concert 3.0
• Wiki entry: Work Items attribute customization

CLM 2012 Process Enactment Workshop Page 114

https://jazz.net/wiki/bin/view/Main/AttributeCustomization
https://jazz.net/library/article/537/
https://jazz.net/library/article/1003
https://jazz.net/library/article/537/

IBM Software

5.1 Introduction to JavaScript Based Attribute Customization

Section Scenario

You realize that some of your project's requirements can not be
implemented with the declarative work item customization you used in the
previous lab. There is a feature called JavaScript based Customization
and you are wondering if that could be a solution for the project's more
complex requirements. Since it looks like your early successes has put
you in the role as the one and only process customization expert, you
decide to learn what this script based customization is all about.

In the first section you will:

• Learn about some capabilities and limitations of JavaScript based
Customization.

• Enable your server to use JavaScript based Customization

• Optionally install a JavaScript development environment on your
RTC client.

The easier customization options you have seen only go so far. IT is sometimes desirable to perform
more complex tasks such as calculating across complex dependencies and values. Rational Team
Concert supports capabilities for implementing more complex behavior in several ways. It is possible to
extend the Rational Team Concert Server and the Web UI using Java and JavaScript (taking advantage
of the Dojo Toolkit). These kinds of extensions can get quite complex and require a lot of knowledge
about the API.

How can RTC be extended?

Please read the article Extending Rational Team Concert
3.x as a good entry point about options to extend RTC.
The Rational Team Concert 4.0 Extensions Workshop is
a newer resource than the one referenced in the article
above.

RTC has the capability to use a simpler approach based on JavaScript to create Attribute Customization.
This capability has been in the product since version 3.x

CLM 2012 Process Enactment Workshop Page 115

https://jazz.net/library/article/1000
https://jazz.net/library/article/1000
https://jazz.net/library/article/784
https://jazz.net/library/article/784

IBM Software

If using RTC 4.0.3 or greater

Rational Team Concert versions 4.0.3 and greater have
differences in the Script Based Configuration Editor for
Attribute Customization from the documented ones in
this lab. Check out the information in Appendix D –
Changes in 4.0.3 attribute customization script based
editor for guidelines in how to follow the lab using the
new editor features.

CLM 2012 Process Enactment Workshop Page 116

IBM Software

5.1.1 JavaScript Based Attribute Customization Capabilities and Limitations

Theory section

This section contains some background information about Attribute
Customization Capabilities and Limitations. It is content for reading and
can be skipped if necessary.

Suggested Reading for JavaScript Based Attribute
Customization

Please read the article Work Items attribute
customization - Using scripts for attribute customization
in addition to following this workshop.

The JavaScript based Attribute Customization allows more flexibility than the attribute customization you
have seen so far.

The JavaScript based Attribute Customization currently supports:

• Reading work item attribute values

• Writing work item attribute values

• Computing with work item attribute values and other data

JavaScript based Attribute Customization allows you to work with the following Supported Attribute
Types:

• Short String

• Medium String

• Large String

• Integer

• Long

• Big Decimal

• Boolean

• Timestamp as an ISO-8601 standard string.

CLM 2012 Process Enactment Workshop Page 117

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#API_for_Javascript
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#API_for_Javascript
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#API_for_Javascript
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Using_scripts_for_attribute_cust
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Using_scripts_for_attribute_cust

IBM Software

The SDK Package com.ibm.team.workitem.api.common shows the portion of the API that is exposed
to JavaScript. See the RTC Extensions Workshop on how to install the SDK if you want to have a deeper
look. The following operations on work item attributes are currently supported:

• workItem.getValue(attributeID) to get the value of the attribute

• workItem.getLabel(attributeID) to get labels and names for attribute values

• workItem.isAttributeSet(attributeID) to determine if the attribute is available

The capability to access work item attribute labels is the method getLabel(), which represents the display
value of the work item attribute value for most of the types is new in RTC 4.0.

Enumeration Types: It is possible to access enumeration types. The operation getValue() returns the
literal ID of the Enumeration Literal. The operation getLabel() allows to access the Enumeration Literal
display value. To set an enumeration value use the Literal ID. See Working with Enumerations for more
information about using Enumerations in scripts.

There is only limited support for Items.

• It is possible to read an item type attribute, but this only returns the item ID.

• A new capability in RTC 4.0 is the ability to access work item Item attribute value labels using
getLabel(). In RTC 4.0 labels for attribute types state, category, project/team area, contributor
attributes are supported.

• It is possible to set Item type attributes, such as owners, using the ID values that are returned
reading these types of attributes in a calculated or default value.

• There is currently no way to access additional information for the item from the ID.

While it is possible to read the work item state, it is not possible to detect if the state changed. Only
the current (or new) state of the work item can be accessed.

It is not possible to access the relationships of a work item, especially to other work items from the links
tab. It is possible to access work item attributes of type work item. This will return the work item handle
but will currently not allow to resolve the referenced work item.

The current limitations constrain what can be done using JavaScript. If you run into them you most likely
have to create a real extension. However, the feature is still useful in a lot of situations.

CLM 2012 Process Enactment Workshop Page 118

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#WorkingWithEnums
https://jazz.net/library/article/1000

IBM Software

5.1.2 Challenges Developing JavaScript Based Attribute Customization

Theory section

This section contains some background information about Challenges
Developing JavaScript Based Attribute Customization. It is content for
reading and can be skipped if necessary.

Developing JavaScript based Attribute Customization is not a trivial task. There are various challenges:

• The JavaScript editors are typically not able to provide as much automation and support as other
editors. The editors can detect less syntax errors and do not provide code completion to the same
extent provided by other editors. This often results in failing scripts with no obvious reasons. Since
JavaScript is not as strict as Java, script failures don't necessarily provide clear indications about
what caused the error.

• JavaScript does not provide the same capabilities Java provides.

• Searching the internet seems to provide fewer examples and good documentation compared to
other languages such as Java.

• Debugging the scripts: only scripts running on the client (attribute customization for validators or
calculated values), can be debugged with tools like Fire b ug . See this information on debugging
scripts for complete information. Appendix B – Script d ebugging shows an example of how to use
that debugger with one of the sample scripts used in this lab.

Since debugging is only possible for certain customization, and the error messages thrown by JavaScript
code errors are sometimes not meaningful, we will discuss script code logging as a development
approach for script development and code debugging. See the Trouble Shooting Appendix on page 192
for some hints and the referred Appendix B for example of alternate debugging client code.

CLM 2012 Process Enactment Workshop Page 119

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Debugging_scripts
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Debugging_scripts

IBM Software

5.1.3 Enable JavaScript

Enable JavaScript

The JavaScript based attribute customization needs to be enabled on the
CCM server before it can be used.

__1. Open a browser and navigate to https://clm.process.ws/ccm/admin you need to log in with a
user that has JazzAdmin repository permission. You can use user ID pewadmin password
pewadmin.

__a. Navigate to the Advanced Properties
https://clm.process.ws/ccm/admin#action=com.ibm.team.repository.admin.configureAdva
nced .

__b. Search for the property “Enable Process Attachment Scripts”. Set the value to true.

__c. Save the change that you just did

__2. You can close the browser.

You have now successfully enabled using JavaScript based work item customization.

CLM 2012 Process Enactment Workshop Page 120

https://clm.process.ws/ccm/admin#action=com.ibm.team.repository.admin.configureAdvanced
https://clm.process.ws/ccm/admin#action=com.ibm.team.repository.admin.configureAdvanced
https://clm.process.ws/ccm/adminy

IBM Software

5.1.4 Optional: Install the Web, XML, and Java EE Development Tools

Add JavaScript Editor to Eclipse

You can use any preferred editor to develop JavaScript. If you want to use
the RTC Eclipse client and have installed the vanilla RTC Eclipse client, it
is possible to install the Web, XML and Java EE Development extension
from the update site for your Eclipse version.

Make sure to install the right version!

Make sure you understand which version of Eclipse you
have installed and that you install a matching version of
the extension. Information about which Eclipse version
you have installed can be found in Help>About Rational
Team Concert one of the Eclipse icons

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__2. Open the Eclipse Help menu and select Install New software....

CLM 2012 Process Enactment Workshop Page 121

IBM Software

__a. If you have not configured any update sites press the Add... button, otherwise use the
Available Software Sites for your Eclipse client and continue in step

__i. In the dialog name the Software Site for example Helios Sr2 (Eclipse 6.2)

Update Site depends on RTC Client Eclipse Version

Make sure to verify if the update site you are using is
compatible to your RTC Eclipse client.

__i. Enter a valid Software Site URL for the version you are using.
http://download.eclipse.org/releases/helios/201102250900 works for a vanilla
RTC 4.0 zip install based on Eclipse 3.6.

__ii. Press OK to continue.

__b. Eclipse will read the content on the selected update site

__c. Group the items by category and select the items to install the Web, XML, and Java EE
Development category, which includes the JavaScript editor.

CLM 2012 Process Enactment Workshop Page 122

http://download.eclipse.org/releases/helios/201102250900

IBM Software

__d. Press Next.

__e. Eclipse will calculate the required dependencies and display what it is going to install.
Press Next.

__f. Accept the license and press Finish.

__g. Restart your RTC Eclipse client when prompted.

You are now able to create projects for JavaScript development and to create and edit JavaScript source
files in your RTC Eclipse client.

CLM 2012 Process Enactment Workshop Page 123

IBM Software

5.2 Script Based Calculated Value

In some cases the value of an attribute is really derived from a calculation with the value of one or many
other attributes. Rational Team Concert uses some built in Calculated Values available for the Formal
Project Management Template. It also allows to create Calculated Values using JavaScript. In the next
section you will learn how to create JavaScript based Calculated Values,

5.2.1 Total Cost Calculated Value

Section Scenario

Your project wants to calculate the total cost for adopting a technology
from the estimated effort, the average cost per hour, and the estimated
investment. The way this is supposed to work is someone enters an effort
estimation and an average cost for the Technology adoption effort. The
Estimated Investment is used to track infrastructure cost the company
must put into adopting the new technology.

Ultimately you want to show Total Cost = Estimated Effort * Average Cost
+ Estimated Investment.

You will use a Script Based Calculated Value for this.

Example for Script Debugging

The script in this section is the one used for the
debugging using Firebug example in Appendix B section.

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__2. Create a new Eclipse project.

CLM 2012 Process Enactment Workshop Page 124

IBM Software

__a. Use the Eclipse menu File > New > Project to create a project.

If you installed the JavaScript support in 5.1.4 create a JavaScript project, otherwise
create a general Project.

__b. Name the Project ScriptBasedCustomization

__c. Leave the defaults and press Finish to create the project.

__i. If you create a JavaScript Project you can dismiss to open the JavaScript
perspective.

__d. Use the menu Window > Show View > Other and open the Project Explorer view to see
the new project.

__3. Go to the Team Artifacts view.

__4. Right click at the Nifty Application Project project area in the Team Artifacts view and select
Open to open the Project Area Editor for your project.

__5. Switch to the Process Configuration tab and open the Configuration > Project Configuration >
Configuration Data > Work Items > Attribute Customization section.

__a. Use the Add... button to add a Calculated Value

__b. As Name enter TotalCostScriptedCalculatedValue

__c. Select the Type Calculated Values

CLM 2012 Process Enactment Workshop Page 125

IBM Software

__d. Review the available Providers by selecting the drop down box..

The Exposure Provider and the Probability Cost Provider are built in providers for the
Formal Project Management Template. In your context they are not applicable.

__i. Select Script Based Calculated Value as Provider.

The configuration dialog should look like below:

__ii. Press OK to set the configuration.

__e. Save the change to the process configuration.

__6. Inspect the Configuration editor section to the right.

If using RTC 4.0.3 or greater

Rational Team Concert versions 4.0.3 and greater have
differences in the Configuration editor from the
documented ones in this lab. Check out the information
in Appendix D – Changes in 4.0.3 attribute customization
script based editor for guidelines in how to follow the lab
using the new editor features.

CLM 2012 Process Enactment Workshop Page 126

IBM Software

__a. There is a Local File Path property to browse for a local script file and to reload the script
file after changes.

__b. There is an Attachment Path property describing where the file will be stored in the
process configuration.

__c. There is a Class Name property to specify the name of the class that is called in the
script.

__d. Finally there is a link to download example code.

__7. Download the example code into your project.

__a. Click at the Download example link in the Configuration editor.

If using RTC 4.0.3 or greater

You will find instead a “Fill in example” link. Once clicked
you can use “Save As...” to download the script sample
as instructed in this lab, or perform the script changes
using the new in place script editor.

See Appendix D – Changes in 4.0.3 attribute
customization script based editor for more information.

__b. Browse to the folder C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\

__c. Change the file name to TotalCostScriptedCalculatedValueProvider.js

__d. Press the Save button.

__e. Save the process configuration.

__8. To see the new script in Eclipse open the Project Explorer view.

CLM 2012 Process Enactment Workshop Page 127

IBM Software

__a. Select the ScriptBasedCustomization project

__b. Use the Refresh context menu entry or press F5.

__c. The externally saved script file now shows up in Eclipse

__9. Inspect the script example

__a. Open the file in Eclipse by double clicking or using open or open with.

Using JavaScript Editors

You can use a JavaScript editor or the Text editor. The
JavaScript editor is syntax aware and makes working
with JavaScripts easier.

You can also open the scripts using an external editor. In
the Eclipse Preferences you can configure Eclipse to
use your preferred editor with the .js file type either
using an internal or external editor.

CLM 2012 Process Enactment Workshop Page 128

IBM Software

__b. Either way, the example should look similar to the code below

__c. To rename the value provider class name replace the string
“com.example.ValueProvider” in both the dojo.provide and dojo.declare statements with
the string “com.acme.providers.script.TotalCostScriptedCalculatedValue”

__d. Save the change.

__10. The example currently does nothing except passing the current value of the attribute through. To
make sure you can see it working, you want to provide some debug output in the logs.

__i. In the line before the return statement add the line

console.log("- Start");

__ii. Your script should now look as below.

__iii. Save your change.

CLM 2012 Process Enactment Workshop Page 129

IBM Software

__11. Switch over to the Project Area editor. The configuration should look like below:

Using RTC 4.0.3 or greater screenshot doesn't match

Remember the information in Appendix D – Changes in
4.0.3 attribute customization script based editor. If using
RTC 4.0.3 or greater the screenshot from above will not
match your environment.

__a. Check the file name in the Local File Path is correct set to
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\TotalCostScriptedCalcula
tedValueProvider.js

__b. Check the Class Name. It shows the old name com.example.ValueProvider. This is
wrong since our change.

__c. Press the Reload button. You might have to maximize the editor to see all buttons.
Double click at the editors tab to maximize. Double click the maximized tab to minimize.

CLM 2012 Process Enactment Workshop Page 130

IBM Software

__d. Confirm the Class Name now shows
com.acme.providers.script.TotalCostScriptedCalculatedValue

__e. Save your changes to the process configuration.

__12. Configure the attribute to use the JavaScript Based Calculated Value.

__a. Open the Configuration > Project Configuration > Configuration Data > Work Items
> Types and Attributes section.

__b. Select the Technology Review work item type. Scroll down to the Attributes section.

__c. In the Attributes section check the Show only custom attributes check-box to narrow
down your search.

__i. Locate and select the custom attribute Total Cost. Press the Edit button.

__ii. Use the drop down button Calculated Value to select the
TotalCostScriptedProvider.

__iii. Add dependencies to the attributes Cost, Estimated Effort and Estimated
Investment. Every time one of these attributes change, the new calculated value
provider needs to get called to do the calculation based on the new data.

Attribute Customization rely on dependent attributes

If a workitem customization such as a value provider
depends on changes of other attributes, it is necessary
to add the dependent attributes to the dependency list. If
this is neglected, the value provider will not be triggered
by changes in the dependent attributes and might not
work as expected.

CLM 2012 Process Enactment Workshop Page 131

IBM Software

Your Custom Attribute Configuration should now look like below.

__d. Click OK and save the changes to the process configuration.

CLM 2012 Process Enactment Workshop Page 132

IBM Software

__13. Now that the prototype Calculated Value provider is configured, you can test if it runs. Log files
provided by the products will help with testing.

Log Files for JavaScript Based Customization

See this information about logging and debugging.

For the Eclipse client the log file is located in the
.metadata folder in the workspace folder and called .log.
For example
C:\JSWorkshops\Workspaces\Lab1\.metadata\.log

For the Web UI the log data is located in the server log
file for example
<JazzServerInstallDir>\server\tomcat\work\Catalina\l
ocalhost\ccm\eclipse\workspace\.metadata\.log

or

<JazzServerInstallDir>\server\tomcat\work\Catalina\l
ocalhost\jazz\eclipse\workspace\.metadata\.log

if you have a 2.x context root.

In this workshop <JazzServerInstallDir> is represented
by C:\JSWorkshops\IBM\JazzTeamServer

__a. Test if the script works in Eclipse using the log file:

__i. Use the Eclipse client to create a new work item of type Technology Review.

__ii. Open an explorer window, locate the Eclipse log file
C:\JSWorkshops\Workspaces\Lab1\.metadata\.log and open it with a text editor

CLM 2012 Process Enactment Workshop Page 133

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Debugging_scripts

IBM Software

Use more advanced text editors

When using more advanced text editors such as
Notepad++ you can keep the log file loaded and just let it
reload if a change is detected. It also highlights several
occurrences of the same text in several lines which
makes analyzing log files easier.

Advanced editors also often support JavaScript syntax
highlighting.

__iii. Scroll to the end of the log file. It should show a log entry of the script engine and
the log message like below.

__b. (Optional) Inspect the Error Log view. You can also integrate the log view in your eclipse
client for this debugging exercise by opening the Error Log view: Window > Show View
> Other > Error Log. You should be able to see something like this:

Troubleshooting

If there is no such entry, check if scripting is enabled,
check the configuration of the attribute was done
correctly and try to save the scrip, reload it and save the
process configuration again. Close and reopen the client
and create a new work item of type Technology Review

__c. Test the script works in the Web UI.

__i. Use the Web UI https://clm.process.ws/ccm/web to create a new work item of
type Technology Review.

__ii. Open the log file
C:\JSWorkshops\IBM\JazzTeamServer\server\tomcat\work\Catalina\localhost\cc
m\eclipse\workspace\.metadata\.log

CLM 2012 Process Enactment Workshop Page 134

https://clm.process.ws/ccm/web
http://notepad-plus-plus.org/download/

IBM Software

__iii. Scroll to the end of the log file. It should show a log entry of the script engine and
the log message like below.

__d. If the log does not show this information, the script did not run and something is wrong.
See the Troubleshooting Box above.

__i. Check if scripting is enabled.

__ii. Close the work items and create a new work item of type Technology Review.

__iii. Reload the script after fixing and save the process configuration.

__14. Currently the script does not do anything, you want to add some useful code.

__a. First it is necessary to read the attributes. Then the calculation needs to be performed.

__b. To be able to read attribute values the script needs access to some API.

__i. Add the dojo.require statement below

dojo.require("com.ibm.team.workitem.api.common.WorkItemAttributes");

__c. Now it is possible to access the workitems attributes through the referenced JavaScript
API.

Access to attributes is provided by workitem.getValue(AttributeIDString). It is necessary
to pass the Attribute ID for the work item. The API provides access to the built in
attributes providing access to the ID's from WorkItemAttributes class.

CLM 2012 Process Enactment Workshop Page 135

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Accessing_built_in_attributes_of

IBM Software

Read Custom Attributes

WorkIttemAttributes only defines the built in attributes.

For Custom Attributes, you have to look up the Attribute
ID in the process configuration, for example by clicking
at the attribute in the Types and Attributes section.

If the ID of the attribute is com.ibm.myattribute you can
read the value using

 workitem.getValue(“com.ibm.myattribute”)

__d. Add the following code to read the attributes and print the value using the attribute ID's

var estimatedInvest = workItem.getValue(
 "com.acme.openup.workitem.attribute.estinvest");
console.log("Estimated Invest: " + estimatedInvest);

var estimatedEffort =workItem.getValue(
 "com.acme.openup.workitem.attribute.esteffort");
console.log("Estimated Effort: " + estimatedEffort);

var averageCost = workItem.getValue (
 "com.acme.openup.workitem.attribute.cost");
console.log("AverageCost: " + averageCost);

__e. Now modify the return statement to calculate the total cost to:

var totalCost = new
String(parseInt(estimatedEffort)*parseInt(averageCost)
+parseInt(estimatedInvest));
if(parseInt(totalCost)>0){
console.log("- Total cost: " + totalCost);
return totalCost;

}
console.log("- return no cost");
return "";

These statements calculate the total cost and return either a number or a blank value.
The blank value is necessary for the next lab.

CLM 2012 Process Enactment Workshop Page 136

IBM Software

__f. The complete function should now look like below

__15. Save the changes to the script.

__a. Go back to the Attribute Customization editor.
If you have closed it or navigated away from it, open the Project Area editor, switch to the
Process Configuration tab and open the Configuration > Project Configuration >
Configuration Data > Work Items > Attribute Customization section. Locate the
customization type Calculated Value, expand its node and click at the customization.

__i. In the Configuration editor section press Reload to upload the changes.

__ii. Save the Process Configuration change.

If using RTC 4.0.3 or greater

Follow instructions in Appendix D – Changes in 4.0.3
attribute customization script based editor for guidelines
in how to follow the lab using the new editor features.

__b. Try out your script.

CLM 2012 Process Enactment Workshop Page 137

IBM Software

__i. Create a new work item of type Technology Review.
Switch to the Tech Review Details tab it should now look like below:

__ii. Open the log C:\JSWorkshops\Workspaces\Lab1\.metadata\.log and scroll way
down to the bottom. You should see something similar to

__c. Enter some plain values such as 11, 100, 3000. Once values are provided, the total cost
is calculated from the values.

__d. The first version of your script is now working!

__16. There are several issues with the first attempt.

It is not able to handle input such as 10d for 10 days or 10T for 10 thousand.

You would like to do debugging, but you want to be able to switch debugging off.

__17. Lets address the debug issue first.

CLM 2012 Process Enactment Workshop Page 138

IBM Software

__a. After the function declaration, define a new variable doDebug to switch debug on and
off and set it to true.

var doDebug = true;

__b. After that define a new variable for scriptname like the line below.

var scriptname = "TotalCostScriptedCalculatedValue";

__c. Your script should now look like below

__d. Define a new function called debug() that takes a variable and logs if doDebug is true.

__i. Define the function after the return””; statement in the body of the function
you are developing. The code looks like

function debug(display){
 if(doDebug){
 console.log(scriptname + " " + display);
 }
}

CLM 2012 Process Enactment Workshop Page 139

IBM Software

__e. Replace the console.log calls by calls to the new function debug().

Your implementation should now look like below.

__i. Save your changes to the script.

__f. Go back to the Attribute Customization editor.

__i. Press Reload to upload the changes.

__ii. Save the change to the Process Configuration.

__g. Test your script.

__i. Create a new work item of type Technology Review.

__ii. Test if the script is still working.

__iii. Check the log file for the output.

CLM 2012 Process Enactment Workshop Page 140

IBM Software

__h. You can now turn the logging on and off by setting doDebug to true or false. This is very
useful if you have more than one script. You can individually switch the scripts debug
output on and off and avoid too much clutter.

__i. In addition the script name is printed in front of each debug statement which allows
highlighting the block of outputs related to one script easier when using advanced text
editors. See the example below:

__18. What is left is to convert the values with modifiers such as m, d, M, T, calculate the real value
and use the result in the calculation.

__a. Add the following lines in front of the var totalCost = … statement:

estimatedInvest=convertValue(estimatedInvest);
estimatedEffort=convertValue(estimatedEffort);
averageCost=convertValue(averageCost);

__b. Add a new function after the debug() function to do the conversion. The code looks like:

function convertValue (value){
 debug("convertValue");
 var calc = handleUndefined(value);
 var slen=calc.length;
 var modifier = calc.substring(slen-1, slen);
 var factor = getFactor(modifier);
 if(factor!=""){
 numbervalue=calc.substring(0,slen-1);
 calc = numbervalue*factor;
 }
 return calc;
}

The code calls handleUndefined() to convert empty input into a string containing “0”.

With the now valid assumption that the string is at least of length one, the code gets the

CLM 2012 Process Enactment Workshop Page 141

IBM Software

last digit as modifier. The modifier is used in getFactor() to calculate the multiplier. If
a factor can be calculated, that digit is removed from the input and the true value is
calculated. If there is no factor the number is passed through.

__c. The missing function to handle undefined values needs to be implemented. Insert it after
the convertValue() function. Add the code below.

function handleUndefined (value){
 if(value==null){
 value="0";
 }
 if(value==""){
 value="0";
 }
 return value;
}

__d. The last step that is missing is to implement getting the factor.

CLM 2012 Process Enactment Workshop Page 142

IBM Software

__i. Add a new function getFactor() after the last function, then save the JavaScript
file. The code would look like below:

function getFactor(modifier){
 // m, w, d, h for month, weeks, days...
 // M, T for millions and thousands
 debug("getFactor");
 var factor = "";
 switch (modifier) {
 case 'w':
 factor = "40";
 break;
 case 'm':
 factor = "240";
 break;
 case 'd':
 factor = "8";
 break;
 case 'h':
 factor = "1";
 break;
 case 'T':
 factor = "1000";
 break;
 case 'M':
 factor = "1000000";
 break;
 default:
 factor = "";
 break;
 }
 debug("getFactor:" + factor);
 return factor;
}

CLM 2012 Process Enactment Workshop Page 143

IBM Software

__19. Test the completed script.

__a. Go back to the Attribute Customization editor.

__i. Press Reload to upload the changes.

__ii. Save the Process configuration change.

__b. Try out your script.

__i. Create a new work item of type Technology Review.

__ii. Enter values for example 2d, 1T, 1M and check if the calculation is performed
correctly.

__c. If your script has errors, inspect the log output and fix them.

__20. If you fix errors, save and reload the script and save the Process Configuration every time
before you test the changes. Make sure to create a new work item or at least to close and
reopen the editor for an existing work item to make sure the change to the script and the
Process Configuration gets picked up by the editor.

You have just successfully completed your first script based calculated value provider.

CLM 2012 Process Enactment Workshop Page 144

IBM Software

5.2.2 “AttributeValueAnalyzer” Calculated Value Provider

Section Scenario

You are curious what information you can gather from work item attribute
values. You decide to create a small spy tool that can help you better
understand how to access data using scripts and what data the script
gets.

The script returns data for attributes and their values as a multi line string.
It can be used in test environments to make the development of script
based attribute value providers easier.

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__a. Open the Project Explorer.

__b. Create a Copy of the TotalCostScriptedCalculatedValueProvider.js and save it as
AttributeValueAnalyzerCalculatedValueProvider.js.

__c. Open the new script AttributeValueAnalyzerCalculatedValueProvider.js in a new editor.

__d. Remove the functions you added to the TotalCostScriptedCalculatedValueProvider
getFactor(), handleUndefined(), and convertValue()), except for the debug() function.

__e. Delete the code between the line debug(" - Start"); and the final return statement.

__f. Rename all occurrences of the text TotalCostScriptedCalculatedValue to
AttributeValueAnalyzer. You should have 3 replacements:

__i. The dojo.provide() statement at the beginning should now show:

dojo.provide("com.acme.providers.script.AttributeValueAnalyz
er");

__ii. The dojo.declare() statement should now show:

dojo.declare("com.acme.providers.script.AttributeValueAnalyz
er");

__iii. The scriptname statement should now show

var scriptname = "AttributeValueAnalyzer";

CLM 2012 Process Enactment Workshop Page 145

IBM Software

__g. In the line after the var scriptname = statement add this new declaration that gives
you access to the built in Attributes:

var WorkItemAttributes =
com.ibm.team.workitem.api.common.WorkItemAttributes;

This defines a variable that allows easy access to the API defined in the corresponding
dojo.require() statement as the second line of the script.

__h. Below the first debug statement in the function declare a new attribute

 var out = "Attribute Values:\n";

The new variable out will contain all the data to be returned later.

__i. Change the return statement to return the value of out The line should look like:

return out;

__j. The Script should now look like below:

CLM 2012 Process Enactment Workshop Page 146

IBM Software

__2. Now add a new function that handles analyzing the general information from the work item
attribute.

__a. Add the code below after the debug function code

function getAttributeData (message,attributeID){
 debug("Get Attribute Data for " + attributeID);
 var attributeValue="";
 var attributeLabel="";
 var result = message + "\n";
 try{
 isSet=workItem.isAttributeSet(attributeID);
 attributeValue=workItem.getValue(attributeID);
 } catch (e) {
 attributeValue = "Exception reading the attribute value";
 }
 try{
 attributeLabel=workItem.getLabel(attributeID);
 } catch (e) {
 attributeLabel= "Exception reading the attribute label";
 }
 result += "Set: " + isSet + "\nValue= " + attributeValue +
 "\nLabel= " + attributeLabel;
 debug(result);
 return result + "\n\n";
}

__b. The code tries to access an attribute given an attribute ID. It tries to read the attribute
value and the attribute label. The data is sent to the debug console and returned as a
readable string.

CLM 2012 Process Enactment Workshop Page 147

IBM Software

__3. To use the code, add statements like the following in front of the return statement of the main
function:

out+=getAttributeData(<someText>, <WorkItemAttributes.ID>);

The lines below show some examples. You can copy all lines from below into your script, Add at
least the lines for the ID, the summary, the priority, the owner and the creation date.

out+=getAttributeData("ID: ", WorkItemAttributes.ID);
out+=getAttributeData("TYPE: ", WorkItemAttributes.TYPE);
out+=getAttributeData("Summary: ", WorkItemAttributes.SUMMARY);
out+=getAttributeData("Creator: ", WorkItemAttributes.CREATOR);
out+=getAttributeData("Owner: ", WorkItemAttributes.OWNER);
out+=getAttributeData("Project Area: ",
 WorkItemAttributes.PROJECT_AREA);
out+=getAttributeData("State: ", WorkItemAttributes.STATE);
out+=getAttributeData("Resolution: ",
 WorkItemAttributes.RESOLUTION);
out+=getAttributeData("Found in: ", WorkItemAttributes.FOUND_IN);
out+=getAttributeData("Severity: ", WorkItemAttributes.SEVERITY);
out+=getAttributeData("Priority: ", WorkItemAttributes.PRIORITY);
out+=getAttributeData("Creation Date: ",
 WorkItemAttributes.CREATION_DATE);
out+=getAttributeData("Due Date: ", WorkItemAttributes.DUE_DATE);
out+=getAttributeData("Estimate: ", WorkItemAttributes.ESTIMATE);
out+=getAttributeData("Corrected Estimate: ",
 WorkItemAttributes.CORRECTED_ESTIMATE);
out+=getAttributeData("Time Spent: ",
 WorkItemAttributes.TIME_SPENT);
out+=getAttributeData("Filed Against: ",
 WorkItemAttributes.FILED_AGAINST);
out+=getAttributeData("Planned For: ",
 WorkItemAttributes.PLANNED_FOR);
out+=getAttributeData("Resolution Date: ",
 WorkItemAttributes.RESOLUTION_DATE);
out+=getAttributeData("Tags: ", WorkItemAttributes.TAGS);
out+=getAttributeData("Modified Date: ",
 WorkItemAttributes.MODIFIED);
out+=getAttributeData("Modified By: ",
 WorkItemAttributes.MODIFIED_BY);

__a. Check the script for any errors and save the script.

__4. You now need to configure the script.

Open the Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section.

__a. In the Attribute Customization editor, select Calculated Values. Use the Add... button at
the bottom of the editor to add a new Calculated Value.

__i. Name the configuration AttributeValueAnalyzer.

CLM 2012 Process Enactment Workshop Page 148

IBM Software

__ii. Make sure the Configuration Type is Calculated Values.

__iii. Select Script Based Calculated Value as Provider

__iv. Use the OK button to create the customization.

__b. Now upload the script.

__i. Use the browse button and browse for the script in the
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization

__ii. Select the file AttributeValueAnalyzerCalculatedValueProvider.js.

__c. Save the change to the Process Configuration.

__5. Configure the calculated value provider

__a. Open the Configuration > Project Configuration > Configuration Data > Work Items
> Types and Attributes section.

__i. Select any work item type and edit the Description attribute.

__ii. Select the AttributeValueAnalyzer for the calculated value provider.

__iii. Add dependencies to the attributes you are interested in triggering the provider.

You can basically select all attributes except the Modified Date. Only charges to
the selected attributes will trigger an update. If you added only selected lines
above, add dependencies to the attributes you monitor. At least add ID, the
summary, the priority, the owner and the creation date.

__b. Click OK and save the changes to the process configuration.

__6. Now you can test the script.

How this Calculated Value works

You have now created a JavaScript based calculated
value for the Description attribute that will calculate the
content of the description from the work item attribute
values. This is done every time an attribute that is in the
list of dependent attributes changes. Since this
description attribute is very prominent in the UI, it makes
looking at the attribute data real easy.

The only disadvantage is, that this is only usable in a
script test environment, because it would overwrite all
descriptions for work items.

__a. Create a new work item.

CLM 2012 Process Enactment Workshop Page 149

IBM Software

__i. Look at the Description Attribute in the work item editor. The work item
Description attribute should now show the calculated text with the information
about the attribute values like in the screen shot below.

__ii. Save the work item. After saving, the type and the state of the work item are set
as well as creation and modification time. The ScriptBased calculated value is
triggered by the changes and the Description attribute should show more data.

__iii. Scroll down and look at the data. Especially look at information such
Enumerations like priority, Creator, Owner, Filed Against and other item type
attributes.

You can see the Enumeration literals as well as the enumeration labels.

Item type attributes show an ID String for the item and the label displays user and
other element names.

__a. Look at the Modified Date output:

It is somewhat unreadable. To show the data correctly some conversion is
necessary.

__7. Extend your script to show human readable dates that could also used for calculation.

CLM 2012 Process Enactment Workshop Page 150

IBM Software

__a. At the beginning of the script underneath the first dojo.require() statement add the
following new dojo.require() statements.

dojo.require("dojo.date");
dojo.require("dojo.date.stamp");

This API can be used to access and convert the timestamp type attributes.

__b. Modify the code and add the boldface lines below each date attribute you have in your
script. If you have not added the dates to begin with, add all the code from below.

__i. The Creation Date:

out+=getAttributeData("Creation Date: ",
WorkItemAttributes.CREATION_DATE);
var creationDate=
dojo.date.stamp.fromISOString(workItem.getValue(WorkItemAttr
ibutes.CREATION_DATE));
out+= "Creation Date " + creationDate + "\n\n";

__ii. The Due Date:

out+=getAttributeData("Due Date: ",
WorkItemAttributes.DUE_DATE);
var dueDate=
dojo.date.stamp.fromISOString(workItem.getValue(WorkItemAttr
ibutes.DUE_DATE));
out+= "Due Date " + dueDate + "\n\n";

__iii. The Modified Date

out+=getAttributeData("Modified Date: ",
WorkItemAttributes.MODIFIED);
var modifiedDate=
dojo.date.stamp.fromISOString(workItem.getValue(WorkItemAttr
ibutes.MODIFIED));
out+= "Modified Date " + modifiedDate + "\n\n";

This code allows to show the date in a human readable format.

__c. Save the script.

__8. Reload the script.

__a. Navigate to the Configuration > Project Configuration > Configuration Data > Work
Items > Attribute Customization section.

__b. Open the calculated values node on the attribute customization editor and click on the
AttributeValueAnalyzer calculated value provider.

CLM 2012 Process Enactment Workshop Page 151

IBM Software

__c. On the Configuration editor press the Reload button.

__d. Save the Process Configuration changes.

__9. Test the changes to the script.

__a. Create a work item. Enter the summary and the category then save the work item.

__b. Validate that the date attributes now return a readable date.

__10. Finally add a section to show some of your custom attributes.

__a. You can use the function getAttributeData() with the custom attributes by providing the
custom attribute ID's. Place the cursor behind the line

out+=getAttributeData("Modified By: ",
WorkItemAttributes.MODIFIED_BY);

__b. Add the following lines

out+="\nCustom:\n";
out+=getAttributeData("Estimated Invest: ",
"com.acme.openup.workitem.attribute.estinvest");
out+=getAttributeData("Estimated Effort: ",
"com.acme.openup.workitem.attribute.esteffort");
out+=getAttributeData("Average Cost: ",
"com.acme.openup.workitem.attribute.cost");
out+=getAttributeData("Total Cost: ",
"com.acme.openup.workitem.attribute.totalcost");

Process IDs in your scripts

Note the process IDs that are used in the scripts as in
the snippet above. You will have to adjust the IDs to the
naming convention used if you followed a different.

__c. Save the script.

__11. Open the Configuration > Project Configuration > Configuration Data > Work Items >
Types and Attributes section.

CLM 2012 Process Enactment Workshop Page 152

IBM Software

__a. Select the work item type Technology Review and edit the Description attribute. If you
select another work item type, you won't see the attributes you want to add as
dependencies.

__b. Add dependencies to the custom attributes Cost, Estimated Effort, Estimated
Investment and Total Cost to trigger the calculation on changes.

__c. Follow the steps from step 8 on page 151 to reload the script and save the process
configuration.

__12. Test the changes

__a. Create a new work item of type Technology Review and verify the Tech Review Details
tab shows up.

__b. Change the values of the custom attributes Cost, Estimated Effort, Estimated
Investment on the Tech Review Details tab and make sure they are presented in the
description of the work item.

__13. Remove the calculated value for the description attribute.

__a. Open the Configuration > Project Configuration > Configuration Data > Work Items
> Types and Attributes section.

__b. Select any work item type and edit the Description attribute.

__c. Select None for the calculated value provider.

__d. Remove the dependencies you added to the description attribute.

__e. Click OK and save the changes to the process configuration.

5.2.3 Summary

You have successfully implemented a calculated value provide that can be used in test environments to
understand the values of work item attributes in script based customization.

CLM 2012 Process Enactment Workshop Page 153

IBM Software

5.3 Script Based Conditions

Section Scenario

Your project wants to enforce the following:

The Total Cost estimate is value is calculated in the work item if all the
following are true:

• The state is “Experimental”

• The complexity is low or manageable

• The impact is High.

Since you manage to exceed expectations so far, you are again asked to
provide a solution. Your experience working with RTC conditions has
already helped you figure out that a simple condition won't support your
needs. Therefore you decide to look into script based conditions.

You will write a condition that checks the attribute values one by one to
decide if the work item is in the desired condition.

Rational Team Concert supports complex required attributes scenarios using a combination of
operational behavior – a precondition – and conditions based on JavaScript.

__1. Open the Eclipse client if it is not already opened and connect to your repository. Use the
workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__2. The first step is to create a condition to calculate if an attribute is required. You will now
implement this condition.

__a. Open the project area editor for Nifty Application Project project area, switch to the
Process Configuration tab and navigate to Configuration > Project Configuration >
Configuration Data > Work Items > Attribute Customization section.

__b. In the Attribute Customization editor, select Conditions. Use the Add... button at the
bottom of the editor or use a right click to add a new Condition.

CLM 2012 Process Enactment Workshop Page 154

IBM Software

__c. Name the condition TotalCostRequiredAttributeCondition make sure the type shows
Conditions and select the only option Script Based Condition for the provider. Then click
OK to create it.

__d. To download the example code, click at the Download example link in the Configuration
editor.

__i. Browse to the folder
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\

__ii. Change the file name to TotalCostRequiredAttributeCondition.js

__iii. Press the Save button.

__e. Save the process configuration.

__3. To see the new script in Eclipse open the Project Explorer view.

__a. Select the ScriptBasedCustomization project

__b. Use the Refresh context menu entry or press F5.

__c. The externally saved script file now shows up in Eclipse

__d. Open the file for editing and review it.

CLM 2012 Process Enactment Workshop Page 155

IBM Software

__i. The file should look like in the image below

How the Script Based Condition works

The condition implements the matches function. The
boolean result of this function is what the precondition
will use to determine if the expected condition is met and
to consequently react.

__4. Start implementing your own code.

__a. To provide a useful name change the ID "com.example.Condition" in the
dojo.provide and dojo.declare statement to
"com.acme.providers.script.TotalCostRequiredAttributeCondition"

__b. Prepare for debugging similar to the other scripts.

__i. Add the following statements after the first function() statement.

var doDebug = true;
var scriptname = "TotalCostRequiredAttributeCondition";

__ii. Copy the function debug() from the calculated value provider script
TotalCostScriptedCalculatedValue.js and insert it after the last return statement.
You are now able to debug your work.

__iii. Add this line before the return statement. It will tell you if the condition ran:

debug("- Start");

__5. The basic preparation work is now finished. Now the script needs to be implemented to match
the requirement.

CLM 2012 Process Enactment Workshop Page 156

IBM Software

__6. At first it is interesting to know the state of the work item. See the Attribute customization Wiki
entry for more information.

__a. Underneath the dojo.provide statement, add a line

dojo.require("com.ibm.team.workitem.api.common.WorkItemAttributes
");

As mentioned, this line is required to have access to the WorkItemsAttributes object
that provides with the constants that will ease the access to the built in attributes.

__b. Add the work item object behind the function declaration using the lines below.

var WorkItemAttributes=
com.ibm.team.workitem.api.common.WorkItemAttributes;

The following image shows the added code.

__7. Check the interesting attributes of the work item to determine if the condition has to check for the
other values. The first attribute to check is the state of the work item.

__a. Find the state ID's of the work item, in order to check when the condition has to check for
the other values. There are basically two options to find them.

__i. Option 1: You can look up the workflow name of the workflow used by the work
items you are interested in.

__ii. Option 2 is just to use a script to get the value, either using the
AttributeValueAnalyzerCalculatedValueProvider.js or to debug the script you
develop and use the debug output to find out the state ID's.

__b. You have used the second option already so this time you look up the information in the
Process Configuration.

__i. The information can be found in the in the Eclipse client in Process
Configuration > Project Configuration > Configuration Data > Work Items >
Workflows.

CLM 2012 Process Enactment Workshop Page 157

https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Using_scripts_for_attribute_cust
https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Using_scripts_for_attribute_cust

IBM Software

__ii. Browse the workflows and find the one you are interested in. In this case the
Workflow is named “Technology Review Workflow”. Copy the name of the
workflow.

__c. To find the state ID's, open the Process Configuration Source tab and use CTRL+F to
open the Eclipse Find window. Paste or type the workflow name “Technology Review
Workflow” into the Find field of the Find and Replace dialog and press the Find button.

__i. Find the State entries and look for the state name “Experimental” and look up the
id property.

__d. The Experimental state has the ID "tecReviewWorkflow.state.s3"

__e. The script you are writing is supposed to be valid for the Experimental state. Go back to
the TotalCostRequiredAttributeCondition script code, and add the lines below in your
script in before the final return statement.

// Access to the built in work item attribute ID's
var state = workItem.getValue(WorkItemAttributes.STATE);
debug("state: " + state);
if(state!="tecReviewWorkflow.state.s3"){
return false; // Nothing to do

}

The code checks if the state is valid. If not, the script returns false, because in our case
there is noting more to do. The format of the condition has been deliberately chosen. It
allows you to easily add more states using ||state=”<stateID>”

__f. Save your script.

CLM 2012 Process Enactment Workshop Page 158

IBM Software

Finding Information in the Process Configuration
Source

It is possible to look some information up in the process
configuration UI. If the location of the information is not
obvious, here is a strategy for finding it:

• Find general information such as names in the
process configuration UI.

• Open the Process configuration Source tab.

• Use CTRL+F to open the Eclipse Find window.

• Paste or type a part of the name or ID, for example
“risk.impact” into the find section of the Find and
Replace dialog and press the Find button.

• Look at the xml entries for id's, literal id's and the
associate name.

• For your enterprise custom process elements, use a
common naming schema for ID's such as
com.company.workitem.attribute.attributename
which makes searching much easier

__8. Now you want to check if the impact of the Technology Review is High.

__a. The first information you need is the attribute ID of the Impact attribute. To gather this
information, in the Eclipse client open the project area editor and in the Process
Configuration tab navigate to Project Configuration > Configuration Data > Types
and Attributes.

__i. In the Work Item Type section, select the work item type Technology Review and
scroll to the Attributes section below. Browse for the attribute Impact and use the
Edit button to open the editor for the attribute.

__ii. The Attribute Editor shows the attribute ID. Copy the work item ID to be used
later. The value should be
 com.ibm.team.workitem.workItemType.risk.impact.

CLM 2012 Process Enactment Workshop Page 159

IBM Software

__b. To be able to compare the data in the attribute with the possible values it can have, there
are two choices: use the enumeration literals or use the label of the enumeration values.

You will use the labels in this example.

Using the literals or the labels in your script

Using the literals makes the coding and debugging
harder as you have to deal with the internal IDs assigned
to the enumeration values.

On the other hand, if using the labels you can use the
human readable representation of the enumeration
values, but you'll have to review your scripts if you use
the same process and logic in project areas in different
locales or if these labels values are changed.

__c. Identify the label for the Impact enumeration. The one we're interested in is High.

__i. Add the following lines to your script before the final return statement. The code
uses the attribute ID you just looked up to get the label of the impact attribute.

// Check for the impact
var impact = workItem.getLabel(
 "com.ibm.team.workitem.workItemType.risk.impact");
debug("impact: " + impact);
if(!(impact=="High")){

return false;
}

The code here simply checks if the impact is high and just exits the condition with
false if not. This means the condition will not be valid. The same pattern is used
to determine if the condition can exit with false is used in all the code here.

__9. At last you want to check the value of the Complexity attribute. You will use the label again. for
other approaches, use the same strategy as described in step 7 on page 157 above to find the
required data.

__a. The attribute ID is com.acme.openup.workitem.attribute.complexity.

__b. The enumeration labels values to look for are Low and Manageable.

CLM 2012 Process Enactment Workshop Page 160

IBM Software

__c. Add the following lines to your script before the final return statement.

// Check for the complexity
var complexity = workItem.getLabel(
 "com.acme.openup.workitem.attribute.complexity");
debug("complexity: " + complexity);
if(!(complexity=="Low"||complexity=="Manageable")){
return false;

}

The statements check if the work item has a complexity set to qualify it to require the
Total Cost estimation. If not, the script returns false.

__10. At this point in the script the work item is qualified and needs the total cost attribute

__a. To make the script a little bit prettier, add a comment and a debug statement in front of
the final return statement. Check and make sure the final return statement returns true
like below.

// Total cost attribute is required to have a value.
debug("Total Cost Attribute Required");
return true;

__11. Save the script

__12. The script is now ready for testing and all that is left is to upload and test it.

The Condition is Not Assigned to the Attribute

Unlike other attribute customization you've done so far,
Conditions are not configured in the attribute section.
Conditions are activated through operation behavior.

__a. To upload the script open the Process Configuration tab in the project area editor and go
to Project Configuration > Configuration Data > Work Items > Attribute
Customization

__b. Expand the list of conditions and select the condition
TotalCostRequiredAttributeCondition you created for the lab

__i. In the Configuration editor select the browse button to browse for the script file.

__ii. Browse to the folder
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\ , select the file
TotalCostRequiredAttributeCondition.js and press Open.

CLM 2012 Process Enactment Workshop Page 161

IBM Software

__iii. Verify that the Attachment Path changed to

/workitem/scripts/common/TotalCostRequiredAttributeCondition.js

and the Class Name changed to

com.acme.providers.script.TotalCostRequiredAttributeCondition

__iv. Save the changes in the Attribute Customization wizard.

__13. Now the script should be ready for testing. You need to configure the operational behavior
before you can test if it works.

__a. In the Process Configuration tab of the project area editor, browse to Configuration >
Team Configuration > Operation Behavior.

__i. Search for the Save Work Item (server) operation for the role Everyone in the
related table column. It should be at the end of the operations list. Click at the
operation.

__ii. In the editor below click the Add button to add a precondition and browse the
available choices.

__iii. Find the Required Attributes For Condition precondition which is an option that
could be used in this case.

__iv. Click OK to add the precondition.

CLM 2012 Process Enactment Workshop Page 162

IBM Software

__v. With the just added precondition highlighted, a configuration section for it appears
in the right side of the editor window Select the Add button in the right editor
window.

__a. Select the TotalCostRequiredAttributeCondition as Condition in the
Required Attributes editor.

__b. Browse the attributes and select the TotalCost attribute to be required
based on the condition.

__c. Click OK

Configure a Condition for an attribute

The in this step you defined which attribute is required in
case the condition returns true. You can use one
condition for several attributes.

__vi. Your editor should look like below.

CLM 2012 Process Enactment Workshop Page 163

IBM Software

__b. Save the changes to the process configuration.

Conditions for Dynamic Read-only Attributes

The operational behavior Read Only Attributes For
Condition can be used to dynamically switch work items
attributes to read only.

__14. Now the condition can be tested.

__a. It is important to monitor the test in the log files. See 13 at page 133 for more details
about the logging capability.

__b. Use the Eclipse client to create a new work item of type Technology Review.

__c. Script logging:

__i. Open an explorer window, locate the Eclipse log file
C:\JSWorkshops\Workspaces\Lab1\.metadata\.log and open it with a text editor
(editors like Notepad++ work best).

__ii. Scroll to the end of the log file. It should show a log entry of the script engine and
the log message like below.

At this point, the new work item has no state.

CLM 2012 Process Enactment Workshop Page 164

http://notepad-plus-plus.org/download/

IBM Software

__d. In the work item provide a Summary such as “Testing TotalCost condition” and save the
work item.

__e. Use the “Research” action to change the state of the work item to “Under Research” and
save the change.

__f. Use the “Test” action to change the state of the work item to “Experimental” and save the
change.

__g. Change to the Tech Review Details tab.

__h. Change the Complexity to Manageable or Low.

__i. Change the Impact to High.

__j. You should see a red asterisk popping up near the Total Cost attribute presentation.

__k. Reload the log file. You should now see an output similar to below.

__l. If not, review the script and fix any issues. The final script is presented below

__15. Test another scenario.

__a. Create a work item of type defect.

__b. Modify the work item a little bit and reload the log file.

__c. You should see – nothing. The precondition triggers the script only for work items that
have the configured attribute in the precondition (Total Cost), and the defect does not
have it.

CLM 2012 Process Enactment Workshop Page 165

IBM Software

__16. As reference, the final script code should look as follows.

You have successfully created and deployed a script based condition for Rational Team Concert that
controls when attributes are required.

You can use the same type of conditions together with the Read-Only Attributes for Condition
operational behavior which allows you to declare attributes read only based on a condition. One example
that can be easily derived from this section would be a condition that makes the cost attributes read-only
in the states Approved and Adopted if the impact is high and the complexity low or manageable.

CLM 2012 Process Enactment Workshop Page 166

IBM Software

5.4 Script based Validations

Section Scenario

Attribute IDs and other data are hard coded into the script based
customization you have done so far. It is impossible to configure them and
the scripts can't be reused easily.

Your project is nervous about the cost to maintain all the scripts and
potential issues with making sure that the same code in different scripts
might be error prone and become unmanageable over time. You have
been asked to look into providing a small example that shows that this
can be done better.

You will create and debug your own configurable script based validator for
regular expressions.

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__2. Open the project area editor for the Nifty Applicaiton Project project are and switch to the
Process Configuration tab.

__3. The script based validators work the same way the non-script based validators work. This
means that the validation can only prevent saving a work items if the Attribute Validation
operational behavior precondition is activated, and the validation returns an error. So you need
to check for the precondition.

__a. In the Process Configuration tab, browse to Configuration > Team Configuration >
Operation Behavior.

__b. Search for the Save Work Item (server) operation for the role Everyone in the related
table column. It should be at the end of the operations list. Click on the operation.

__c. Try to find the Attribute Validation precondition in the list of preconditions displayed. If
the precondition is not configured, use the Add... button to add it. Browse for it in the list,
select it and select OK. The Precondition should now show up in the list of active
preconditions.

__4. You will now implement a script based validation that work with the precondition.

__a. Open the Configuration>Project Configuration > Configuration Data > Work Items >
Attribute Customization section.

__b. In the Attribute Customization editor, select Validators. Use the Add... button at the
bottom of the editor or use a right click to add a new Validator.

CLM 2012 Process Enactment Workshop Page 167

IBM Software

__c. Name the new validator RegExpValidator, make sure the type shows Validators and
select the option Script Based Validation for the provider.

__d. To download the example code, click at the Download example link in the Configuration
editor.

__i. Browse to the folder
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\

__ii. Change the file name to RegExpScriptedValidator.js

__iii. Press the Save button.

__iv. Save the process configuration.

__5. To see the new script in Eclipse open the Project Explorer view.

__a. Select the ScriptBasedCustomization project

__b. Use the Refresh context menu entry or press F5.

__c. The externally saved script file now shows up in Eclipse

__d. Open the file for editing.

CLM 2012 Process Enactment Workshop Page 168

IBM Software

__6. You will now create the code for the script based validation.

__a. The initial code looks like below. Review the code. The boxes and the arrows show
where you will change the code in the next steps.

Please review the variable declarations for the variables Status and Severity, and the
corresponding dojo.require() statements. This code allows you to create a status with a
defined severity.

__b. Locate the strings "com.example.Validator" and replace it with
"com.acme.providers.script.RegExpScriptedValidation" to rename your validator.

__c. Prepare the code for better debugging as before. In the line after the (function()
declaration add the lines (marked by the first arrow):

var doDebug= true;
var scriptname = "RegExpScriptedValidation";

__d. Open one of the scripts you created before and copy the debug function over. Insert the
code below right after the statement return Status.OK_STATUS (marked by the second
arrow).

function debug(display){
 if(doDebug){
 console.log(scriptname + " " + display);
 }
}

CLM 2012 Process Enactment Workshop Page 169

IBM Software

__e. Add a statement to debug directly underneath the validate: function(... statement.

debug("– start");

__7. Now the script is prepared to allow developing the required capabilities. This time you want to
keep the script as configurable as possible.

__a. Review the parameters that the function call retrieves.

validate: function(attribute, workItem, configuration) {

__i. The parameter attribute provides you with the ID of the attribute the provider is
configured for.

__ii. The parameter workItem provides access to the work item attribute values.

__iii. The parameter configuration provides access to additional information that can
be stored in the process configuration source.

__b. The JavaScript regular expression class RegExp that you will use requires one
parameter with the regular expression string and has an optional parameter for modifiers
(such as ignore case). You want the regular expression and the modifier to be
parameters that are passed to the validation from outside. Add the following lines to your
script right after the line with the debug statement you just added.

var
pattern=configuration.getChild("parameters").getStringDefault("pa
ttern", "");
var
modifier=configuration.getChild("parameters").getStringDefault("m
odifier", "");
var verifyPattern=new RegExp(pattern,modifier);
debug("RegExp: "+pattern+" [" +modifier+"]");

The code above retrieves information from XML code of the following form that can be
added to the process configuration source:

<parameters pattern="<PatternString>" modifier="<ModifierString>"
… />

__i. The first line tries to get a <parameters> element inside the configuration
information for the validator and tries to read the pattern attribute if available or
uses the default empty string. The default is passed as the second parameter to
the getStringDefault method.

__ii. The second line tries the same with an attribute named modifier.

__iii. The last line prints the result for debugging into the log files.

CLM 2012 Process Enactment Workshop Page 170

IBM Software

Missing Configuration Data Will Throw Exceptions!

If the configuration data in the XML is missing from the
process configuration, the call to configuration.getChild
will retrieve a null value and the subsequent call to
getStringDefalt() will cause an exception. To enhance
debugging you can surround these statements with a
try /catch block as presented below:

try {

...

} catch (e) {

debug("Exception " + e.message);
throw "Configuration Exception: "

+ e.message;

}

__c. Now it is necessary to retrieve the value of the attribute and test that against the regular
expression. Add the following lines to your script, after the debug statement of the last
addition.

var valuetoTest=workItem.getValue(attribute);
var verifyPattern=new RegExp(pattern,modifier);
var result=verifyPattern.exec(valuetoTest);
debug("Test Result: " + result);

__i. The first line reads the attribute the validator is configured for. The ID of the
attribute is passed in the parameter attribute.

__ii. In the next line you create a new regular expression object with the pattern and
modifier retrieved from the configuration.

__iii. The third line is used to execute the regular expression. The regular expression
execution returns an array with the first value containing the pattern match.

__iv. The debug statement just logs the returned values.

CLM 2012 Process Enactment Workshop Page 171

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/RegExp/exec

IBM Software

__d. Now it is possible to test if the value of the attribute matches the pattern. Add the
following lines to your script after the last debug statement.

if(result[0]!=valuetoTest){
debug("Validation Fail");
//Get the configuration parameters about the severity and error

message
var severity=

configuration.getChild("parameters").getStringDefault("severity",
Severity.ERROR.name);
var message=

configuration.getChild("parameters").getStringDefault("message",
"Regular Expression failed!");
debug("Validation: "+severity+" [" +message+"]");
return new Status(Severity[severity], message);

}

__i. The code tests if the returned result in the array at position 0 equals the whole of
the work items attribute we test. The other results in the array contain partial
matches of the regular expression. Only if the value of result[0] equals the tested
attribute value content used as input value the whole input conforms the
expression. If it is the case there was a match. If not, the validation fails, which is
handled in the if statement.

__a. First the code logs the failure.

__b. Then the desired severity is retrieved from the configuration object. As
default the severity is set to error.

__c. Next the message string is retrieved from the configuration A simple
default message is used in case there is no configuration.

__d. The retrieved information about severity and message is logged.

__e. Finally a new status object based on severity and message is created and
returned.

__e. Now add a last line to log the succeeded validation after the closing bracket for the if
statement:

debug("Validation Success");

__f. Save the changes to your script.

__g. Reload the modified script.

__i. Return to the project area editor, the Process Configuration tab and open the
Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section.

__ii. In the Attribute Customization editor, browse for the RegExpValidator.

CLM 2012 Process Enactment Workshop Page 172

IBM Software

__iii. Highlight the RegExpValidator and click Reload. Make sure the Class Name and
path now show names containing RegExpScriptedValidator.

__iv. Save the process configuration change.

__h. Modify the validator for the attribute TotalCost.

__i. Open the Configuration > Project Configuration > Configuration Data > Work
Items > Types and Attributes section.

__ii. Select the Technology Review work item type.

__iii. Edit the Total Cost custom attribute.

In the Validators section select the RegExpScriptedValidator from the drop
down box and press OK.

__iv. Save the process configuration change.

__i. Now the validator needs to be configured with the pattern, modifier, severity and error
message.

__i. Switch the project area editor to the Process Configuration Source tab.

__ii. Use CTRL+F and enter com.acme.providers.script.RegExpScriptedValidation
as your search term.

CLM 2012 Process Enactment Workshop Page 173

IBM Software

__a. The entry you find should contain the data. Please note the XML below
has been wrapped to fit the document.

__b. Enter the following line with parameters right before the end of the
validator section marked with </validator>.

<parameters pattern="(\d*M)|(\d*T)|(\d*)" modifier=""
message="Invalid format. Use Format: 1M, 4T, or any
number..." severity="ERROR"/>

__c. Review the data you just entered. It is exactly the same information
provided in the regular expression validator in the last lab. It contains the
regular expression, an empty modifier, the standard message and severity
Error.

Your code should look like below.

__d. Save the process configuration change.

__j. Create a new work item of type Technology Review. Switch to the Tech Review Details
tab. Enter data into the Total Cost attribute.

__i. Enter “Foo”. An error marker should show up and provides the error message you
configured as hover.

__ii. Enter a number or a number followed by 'M' or 'T' and verify the error indicator
disappears.

You have just successfully implemented a script based validator that can be configured using XML in the
process configuration source. The same configuration technique can be used for all other JavaScript
based customization.

CLM 2012 Process Enactment Workshop Page 174

http://en.wikipedia.org/wiki/Regular_expression

IBM Software

5.5 Script based Value Set

Section Scenario

Your project can't provide a web page with the department information to
be used with the HTTP Filtered Value Provider at this time. Although
everyone agrees it would be the best solution you are asked to replace it
with a simple selection of hard coded department names.

You head back to you cubicle, wondering if script based value sets could
be a solution and how they would work.

Scripting HTTP Value providers

In Appendix C we will provide you with information on
how to build a script to call the cars service we used as
an example in Lab 4.

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__2. Open the project area editor for the Nifty Application Project project are and switch to the
Process Configuration tab.
Open the Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section.

__a. In the Attribute Customization editor, select Value Sets. Use the Add... button at the
bottom of the editor or use a right click to add a new Value Set.

__b. As Name enter Department Scripted Value Set.

__c. As Type select Value Sets.

__d. As Provider select Script Based Value Set.

CLM 2012 Process Enactment Workshop Page 175

IBM Software

__e. Your Configuration should look as below. Click OK to create the configuration.

__3. To download the example code, click at the Download example link in the Configuration editor.

__i. Browse to the folder
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\

__ii. Change the file name to ScriptBasedDepartmentValueSet.js

__iii. Press the Save button.

__iv. Save the process configuration.

__4. To see the new script in Eclipse open the Project Explorer view.

__a. Select the ScriptBasedCustomization project

__b. Use the Refresh context menu entry or press F5.

__c. The externally saved script file now shows up in Eclipse

__d. Open the file for editing.

CLM 2012 Process Enactment Workshop Page 176

IBM Software

__e. The example looks like below:

__f. The script pushes values into an array and returns the array

__5. Rename the class and prepare the script for better debugging like before. Debugging is not
really needed, the example is not complex, but that might change in the future.

__a. Locate the string "com.example.ValueSetProvider" and replace it with
"com.acme.providers.script.ScriptBasedDepartmentValueSet" to rename the value set.

__b. In the line after the (function() declaration add the lines:

var doDebug= true;
var scriptname = "ScriptBasedDepartmentValueSet";

__c. Open one of the scripts you created before and copy the debug function over. Insert the
code immediately after the statement “return result;”.

function debug(display){
if(doDebug){

console.log(scriptname + " " + display);
}

}

__d. Add a debug(“- Start”); statement at the beginning of the function as before.

__e. Add a debug(“- return results”); statement before the return statement.

__f. Now the script is prepared to allow developing the required capabilities. This time you
want to keep the script as configurable as possible.

__6. Add some department values to the script

__a. Change the strings in the existing result.push() statements to “Development” and
“Sales”.

CLM 2012 Process Enactment Workshop Page 177

IBM Software

__b. Add new result.push() statements with the strings "Accounting", "IT", "Production".

__c. The resulting code should look like below

__d. Save the changes to the script.

__7. Reload the script.

__a. Go back to the Attribute Customization editor. If you have closed it or navigated away
from it, open the Project Area editor, switch to the Process Configuration tab and open
the Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section. Locate the customization type Value Set, expand its
node and click at the customization.

__b. In the Configuration editor section press Reload to upload the changes.

__c. Your configuration should look as follows. Please note, keep the Filtered check box in the
Value Set Provider Script Settings unchecked.

__d. Save the Process configuration change.

CLM 2012 Process Enactment Workshop Page 178

IBM Software

__8. Configure the Attribute for the new Attribute Customization

__a. Open the Configuration > Project Configuration > Configuration Data > Work Items
> Types and Attributes section.

__b. Select the Technology Review work item type. Scroll down to the Attributes section.

__c. In the Attributes section check the Show only custom attributes check-box to narrow
down your search.

__d. Locate and select the custom attribute Affected Departments. Press the Edit button.

__e. Use the drop down button Value Set to select the Department Scripted Value Set.

__f. Click OK and save the changes to the process configuration.

__9. Test your new Value Set.

__a. Create a new work item of Type Technology Review.

__b. Open the Tech Review Details Tab.

__c. Press the Add... button on the Affected Departments attribute.

__d. You see a value selection dialog like below.

__e. Select the values Development and IT and click OK.

__f. The selected values are added to the Affected Departments list.

__g. Press the Add... button again.

__h. In the selection dialog select the Filter field and type something for example 'A'.

CLM 2012 Process Enactment Workshop Page 179

IBM Software

__i. The filter does not work. To have the filter working follow the info box below.

JavaScript Based Value Sets and Filtering

Please read at Attribute customization Wiki entry as well
as the special Wiki entry around Value Set Providers.

To allow your script based value provider to use filtering,
access the filter it needs to implement the interface

getFilteredValueSet :
function(attributeId, workItem,
configuration, filter)

This interface provides access to the filter and can act on
it.

__ii. The example script ScriptBasedDepartmentValueSetFiltered.js which is part of
the script sources that you can download from the lab material provides you with
an example. It creates a regular expression pattern that tests for a matching
prefix and can be used as type ahead filter.

__10. If you have issues with the script, you can debug it.

__a. To debug your script open the script log of the server at
C:\JSWorkshops\IBM\JazzTeamServer\server\tomcat\work\Catalina\localhost\ccm\eclips
e\workspace\.metadata\.log

Script Log file for Value Sets

Value Sets as used by the 'Value Set Combo' and the
'Value Set Picker' presentation (typically HTTP value set
providers) are only evaluated on the server and therefore
always log into the server log

<JazzServerInstallDir>\server\tomcat\work\
Catalina\localhost\ccm\eclipse\workspace\.
metadata\.log

In case of a 2.x context root, replace ccm by jazz in the
string above.

In this workshop <JazzServerInstallDir> resolves to
C:\JSWorkshops\IBM\JazzTeamServer

You have just successfully implemented a script based value set.

CLM 2012 Process Enactment Workshop Page 180

file:///C:/Jumpstart_WS/Warroom/Users/jruehlin/Documents/Workspaces/CLM%202012/Process%20Enactment%20Workshop/Labs/__1.%20https://jazz.net/wiki/bin/view/Main/DataSourceValueSetProviders#Custom_Filtered_Value_Set_Provid
file:///C:/Jumpstart_WS/Warroom/Users/jruehlin/Documents/Workspaces/CLM%202012/Process%20Enactment%20Workshop/Labs/__1.%20https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Value_sets

IBM Software

5.6 Calculated Value to Visualize the State of the Technology Review

Section Scenario

Your project has discovered that management does not understand the
state of the Technology Review Work Items. During the last meeting you
have been asked if it would be possible to display the current state and
the valid actions as a graphic.

You head back to your cubicle, wondering if you will be able to fulfill this
request and how that could work.

This Solution Uses an Internal Service

The solution described below relies on the attachment
service which is internal and not documented. There are
currently no plans to change the service. If the service
changes this feature might stop working.

You can skip this section if you want to, but it provides
some interesting additional knowledge.

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1. Log in with the user jim password jim.

__2. Review the Technology Review work item.

__a. Create a work item of the type Technology Review.

__b. Switch over to the Tech Review Details tab.

__i. The tab contains a blank section named Workflow Information that you probably
already noticed.

__ii. The Workflow Information section is a read only Wiki type attribute that can be
used to display information such as links.

CLM 2012 Process Enactment Workshop Page 181

IBM Software

__iii. The Wiki also displays certain resources provided by a REST service
automatically. You will use this mechanism to display the workflow of the work
item.

__3. Download the supporting files

__a. Browse to the download location of this workshop. In the Lab Material section, locate the
link Lab 5.6 Workflow Image Default Value. Download the referenced file and store the
file on your local drive and remember the location. The file on disk will be named
YYYYMMDD_ScriptBasedCustomization_Lab5_WorkFlowImage_Files.zip. The
prefix is of the form YYYYMMDD, where YYYY, MM, DD represent year, month of year
and day of month.

__4. Use the Eclipse menu File > Import to open the import wizard.

__a. In the import wizard select Archive File in the category General.

__b. Use the Next button.

__c. Select the radio-button Select Archive File.

__d. Browse to the file you downloaded, select it and press Open.

CLM 2012 Process Enactment Workshop Page 182

https://jazz.net/library/article/1093

IBM Software

__e. The screen should show a new project for import.

__f. Press Finish to import the files.

__g. Open the Eclipse Project Explorer view. You should now see a new project in your
Eclipse workspace. The project contains several image files and a JavaScript file.

__5. Open and review the JavaScript file.

__a. Open the JavaScript file in an editor, for example in the JavaScript or text editor in
Eclipse.

CLM 2012 Process Enactment Workshop Page 183

IBM Software

__b. The file looks similar to scrips you have already developed. It uses the debug output
capabilities, it looks at the state value of a work item. The main code is a decision table
that returns some text based on the value of the workflow state

__c. The return statement below will return a URL and a state name as text. The place holder
<URL> needs to be replaced by a real URL. The statement below works for the state
Proposed.

return "{{<URL>|Proposed}}"

__d. The values of the State ID's have been identified by looking them up in the Process
Configuration source as described in 5.3 Script Based Conditions section __7. __a. -__d.
 on page 157-158.

__6. Prepare the workflow images so that they can be displayed in the Wiki.

Rational Team Concert does not display all data provided by a link in the Wiki. It does however
display images that are defined as a work item attachment.

__a. Create a work item in which to store the attachments. Create a Task and name it “DO
NOT DELETE ME - SERVING REFERENCED ATTACHMENTS”

__b. Switch to the Links tab.

__c. In the Attachments section use the button Add File....

__d. Browse to the ScriptBasedCustomization_Lab_5_WorkflowImages folder in
C:\JSWorkshops\Workspaces\Lab1.

CLM 2012 Process Enactment Workshop Page 184

IBM Software

__i. Select the first image TechnologyReviewWorkflow_State_0_New.png.

__ii. Click Open to upload the image file.

__e. Upload all other images in the order of the file names.

__i. In the Attachments section use the button Add File....

__ii. Browse and select the next file

__iii. Click Open to upload the image file.

__f. Repeat the steps i-iii for all remaining files keeping the order of the files.

__g. Save the work item.

__7. get the URL for an attachment and add it to the script.

__a. The work item should now contain all the images for all the state, including an image for
an undefined state.

__b. Right click on the attachment TechnologyReviewWorkflow_State_0_New.png and
select copy URL.

CLM 2012 Process Enactment Workshop Page 185

IBM Software

__c. Switch to the editor for the JavaScript file
WorkFlowStateScriptedCalculatedValueProvider.js.

__i. Search the line for the sate New, mark the <URL> string and replace it with the
value of the URL you copied in the previous step.

__ii. The line should now look similar to

if(workFlowState=="") return
"{{https://clm.process.ws/ccm/service/com.ibm.team.workitem.
common.internal.rest.IAttachmentRestService/itemName/com.ibm
.team.workitem.Attachment/1|New}}";

__iii. The basic URL is a common URL that is used for all attachments. The individual
attachments are accessed by their number.

__d. Replace the rest of the <URL> strings with valid attachment URL's.

__i. Replace all the <URL> strings left by the following code

https://clm.process.ws/ccm//service/com.ibm.team.workitem.co
mmon.internal.rest.IAttachmentRestService/itemName/com.ibm.t
eam.workitem.Attachment/

and leave the number out.

__ii. Look up the Attachment numbers in the work item for all images. It is likely a
consecutive list.

__iii. Insert the attachment number at the end of the URL's.

__e. Your code should now look similar like below.

__f. The last line in the script will show an image if no matching state can be found. This adds
an indicator to the users, that the process has been changed and the images are not
correct anymore.

__g. Save your changes to the JavaScript code.

CLM 2012 Process Enactment Workshop Page 186

IBM Software

__8. Now you can configure your JavaScript based default value provider to test it. Switch to the
Process Configuration tab and open the Configuration > Project Configuration >
Configuration Data > Work Items > Attribute Customization section.

__a. Use the Add... button to add a Calculated Value

__b. As Name enter Visualize Workflow State

__c. Select the Type Calculated Values

__d. Select Script Based Calculated Value as Provider.

The configuration dialog should look like below:

__e. Press OK to set the configuration.

__f. In the Configuration editor section to the right use the Browse... button to browse for
your script.

__i. Browse to your folder:

C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization_Lab_5_WorkflowI
mages

CLM 2012 Process Enactment Workshop Page 187

IBM Software

__ii. Select the Script below and use the OK button.

WorkFlowStateScriptedCalculatedValueProvider.js

__iii. Save the changed process configuration.

__9. Configure the attribute to use the JavaScript Based Calculated Value. Open the Configuration
> Project Configuration > Configuration Data > Work Items > Types and Attributes section.

__a. Select the Technology Review work item type. Scroll down to the Attributes section.

__b. In the Attributes section check the Show only custom attributes check-box to narrow
down your search.

__c. Locate and select the custom attribute Workflow Information. Press the Edit button.

__d. In the Attribute Editor use the Calculated Value drop down button and select Visualize
Workflow State.

__e. Add a dependency to the attribute Status. Select OK.

__f. Save the change to the process configuration.

CLM 2012 Process Enactment Workshop Page 188

IBM Software

__10. Test your work.

__a. Create a work item of type Technology Review in the Eclipse Client.

__b. Switch to the Tech Review Details tab

__i. The workflow Information should be visible as below.

__ii. Provide a Summary and other attributes as needed and save the work item.

__iii. Now it shows the Proposed state.

__iv. Change the states to check that the images match the states.

__c. Create a work item of type Technology Review in the Web Client.

__i. Switch to the Tech Review Details tab.

__ii. The Workflow Information shows text for the new state. Use the Preview button
to see the current value.

__iii. Save the work item. Add required attributes if necessary. The Workflow
information now displays the Proposed state.

__iv. Move the work item through the states to confirm all is working as desired.

You have successfully created a calculated value provider that displays the state machine as graphics.

CLM 2012 Process Enactment Workshop Page 189

IBM Software

5.7 Summary

You have successfully created JavaScript based attribute customization. This customization allows more
flexibility as your process matures and provides you with extended capabilities to compute:

• Default Values

• Attribute Conditions

• Attribute Validators

• Value Sets

CLM 2012 Process Enactment Workshop Page 190

IBM Software

5.8 Solutions

You can download example solutions for this lab from the workshop download page. The solutions are
available as Link Lab 5 Solution Files.

__1. Browse to the download location of this workshop.

__a. In the section Lab Material locate the link Lab 5 Solution Scripts.

__b. Download the referenced file and store the file on your local drive and remember the
location. The file on disk will be named
YYYYMMDD_ScriptBasedCustomization_Lab5_Solutions_Scripts.zip. The prefix is
of the form YYYYMMDD, where YYYY, MM, DD represent year, month of year and day
of month.

__2. Use the Eclipse menu File>Import to open the import wizard. Import the solution files following
the steps in 5.6__4. on page 182.

CLM 2012 Process Enactment Workshop Page 191

https://jazz.net/library/article/1093

IBM Software

5.9 Appendix A - Script Troubleshooting

Writing JavaScript can be challenging. The lack of strict types and a challenging debugging environment
are the main contributors to this situation.

Here some hints derived from issues that came up while creating the material for this Lab

• Use a lot of logging.

• Use a text editor that does not lock the log file, detects changes to the log file and reloads the log file
if requested. One good specimen of this type of text editor is Notepad++.

• If the client log does not contain information about your script, check the server log.

• Don't forget to reload and save your process configuration after changes to the scripts

• Close work item editors and re-open them to make sure the new script version is used in the work
item.

• If you are not confident of the uploaded version of the script delete the script attachment from the
process attachments.

• Variables and functions that get called cause
com.ibm.team.repository.common.TeamRepositoryException: Unexpected exception type, if they
don't exist.

• Missing Brackets or semicolons throw weird errors such as “missing ; before statement”.

• You can surround your code with throw/catch blocks in order to make it more resilient.

CLM 2012 Process Enactment Workshop Page 192

http://notepad-plus-plus.org/download/

IBM Software

5.10 Appendix B – Script Debugging

5.10.1 Script debugging example with Chrome

Please see this article about debugging scripts with Chrome.

5.10.2 Script debugging example with Firebug

This appendix section shows you an example of debugging one of the scripts in this lab using Firebug as
an alternative option to the code logging statements that you have been coding in the lab examples.
Note that we give some basic hints on how to use Firebug Firefox add-on, but you may want to use other
debuggers of your choice that provides you with similar features.

The script we use in this example is the one from the Section 5.2.1.Total Cost Calculated Value. It is
assumed that you have already completed that section so the script is already working as per lab
instructions.

The steps to follow are:

__1. Open Firefox browser. If you don't have Firefox already installed on your system you can get it
from this site. Try to install a version that follows the Rational Team Concert system
requirements.

__2. Within Firefox, navigate to the Firebug page, click the Install Firebug button and follow the
instructions. Your browser will be restarted after installation.

__3. In Firefox, navigate to Rational Team Concert, to the Nifty Application Project project area. For
example, following the lab convention, you can directly navigate to:
https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project

__4. Log in with the user jim password jim.

__5. Create a new work item of type Technology Review
Note you can also open an existing work item.

CLM 2012 Process Enactment Workshop Page 193

https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project
http://getfirebug.com/
http://www.mozilla.org/en-US/firefox/new/
https://jazz.net/library/article/1360

IBM Software

__a. If you create a new work item, give it a summary and save it.

__b. Modify the url in your browser to add more information for debugging the script including
the “?debug=true”. For example:

https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project ?
debug=true #action=com.ibm.team.workitem.viewWorkItem&id =<YourCurrentWIID>

Note that adding the “debug=true” parameter is not mandatory, but it will remove some
code compression and provide more information available for debugging

__6. Open Firebug clicking Tools > Firebug > Open Firebug, or clicking the icon in your browser

__7. Switch to the Script tab, and click the Enable link to activate that view. You may be asked to
reload the page for it to begin working.

__8. Check the script has been loaded:

CLM 2012 Process Enactment Workshop Page 194

https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project?debug=true#action=com.ibm.team.workitem.viewWorkItem&id
https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project?debug=true#action=com.ibm.team.workitem.viewWorkItem&id
https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project?debug=true#action=com.ibm.team.workitem.viewWorkItem&id
https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project?debug=true#action=com.ibm.team.workitem.viewWorkItem&id

IBM Software

__a. Open the drop-down list that appears at the top of the Firebug Script view

__b. You should find the script listed under the root of your server Public URI, in this case as
sub-nodes under “clm.process.ws/”

__c. Click TotalCostScriptedCalculatedValueProvider,js script to make the code appear in the
debugging section.

__9. Add a breakpoint:

__a. Click in the left margin of the code line where the value of the Estimated Invest is
gathered:
var estimatedInvest =
workItem.getValue("com.acme.openup.workitem.attribute.estinvest");

__b. You should see a red circle that denotes the breakpoint something similar as follows:

CLM 2012 Process Enactment Workshop Page 195

IBM Software

__10. Debug the code:

__a. Back in the Technology Review work item introduce a value in one of the attributes that
will make the script fire, for example Estimated Effort

__b. Firebug will get focus high-lighting the line with the breakpoint

__c. The right side of the window provides lots of valuable information with the usual views
you find in any debugger.

__i. The Watch section may be the most useful sections when you are beginning to
develop scripts like the ones in this lab. This is because uou are probably not
familiar yet with the information you have access to or how to access it in work
items.
You can also add expressions in this view to further debug your code or test new
code for new features you want to add to your scripts.

__d. On top of the left side of the debug window you have access to the typical controls for
controlling the debug code flow:

CLM 2012 Process Enactment Workshop Page 196

IBM Software

These are the basics steps to begin using the Firebug browser add-on for debugging your scripts code.
Once you are done with your code debugging, remember to remove the “debug=true” parameter from
your url, and to shutdown Firebug to reduce resource consumption.

CLM 2012 Process Enactment Workshop Page 197

IBM Software

5.11 Appendix C – Scripted HTTP Value Set Provider

This appendix will show you how you can use a scripting attribute customization that will call an external
service to populate the results. The example uses the same service used in Lab 4 for the HTTP Filtered
Value Set (section 4.2.2). The example is placed in this appendix section because of the lack of a service
with representative values that could be used with the lab scenario.

More information and code samples

The code in this appendix is based on the information
you can find in the jazz.net wiki page called. Tutorial for
providing a custom value set provider.

You can find the code described below in the workshop
download files in a JavaScript source file called
“DepartmentProviderScripted.js”.

You can also find information about using this feature to
gather information from the OSLC services of your Jazz
deployment in this blog entry

The steps to follow are:

__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use
the workspace C:\JSWorkshops\Workspaces\Lab1 . Log in with the user jim password jim.

__2. Open the project area editor for the Nifty Applicaiton Project project are and switch to the
Process Configuration tab.
Open the Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section.

__a. In the Attribute Customization editor, select Value Sets. Use the Add button at the bottom
of the editor or use a right click to add a new Value Set.

__b. As Name enter Department Provider Scripted

__c. As Type select Script Based Value Set.

__d. As Provider select Script Based Value Set.

__3. To download the example code, click at the Download example link in the Configuration editor.

__i. Browse to the folder
C:\JSWorkshops\Workspaces\Lab1\ScriptBasedCustomization\

__ii. Change the file name to DepartmentProviderScripted.js

CLM 2012 Process Enactment Workshop Page 198

http://jorgediazblog.wordpress.com/2012/06/27/work-item-customization-httpconector-and-oauth-in-rtc-4-0-for-oslc/
https://jazz.net/wiki/bin/view/Main/DataSourceValueSetProviders#Tutorial_for_providing_a_custom
https://jazz.net/wiki/bin/view/Main/DataSourceValueSetProviders#Tutorial_for_providing_a_custom

IBM Software

__iii. Press the Save button.

__iv. Save the process configuration.

__4. To see the new script in Eclipse open the Project Explorer view.

__a. Select the ScriptBasedCustomization project

__b. Use the Refresh context menu entry or press F5.

__c. The externally saved script file now shows up in Eclipse

__d. Open the file for editing.

__e. The example looks like below:

__f. The script pushes values into an array and returns the array

__5. Rename the class and prepare the script for better debugging like before.

__a. Locate the string "com.example.ValueSetProvider" and replace it with
"com.acme.providers.script.DepartmentProviderScripted" to rename the value set.

__b. In the line after the function() declaration add the lines:

var doDebug= true;
var scriptname = "DepartmentProviderScripted";

__c. Open one of the scripts you created before and copy the debug function over. Insert the
code below right behind the statement return result.

function debug(display){
if(doDebug){

console.log(scriptname + " " + display);
}

}

CLM 2012 Process Enactment Workshop Page 199

IBM Software

__6. Prepare the script to use the HTTP connector:

__a. Add the following dojo.require statement after the dojo.provide one:

dojo.require("com.ibm.team.workitem.api.common.connectors.HttpConn
ectorParameters");

That dojo class provides the needed features to open a connection and manage the
retrieval of values to call an external service.

__b. Add a shortcut to the HTTPConnectorParameters to ease the development. To do so,
add the following statement after the function() declaration:

var HttpConnectorParameters =
com.ibm.team.workitem.api.common.connectors.HttpConnectorParamete
rs;

__c. The customized code looks like the following so far:

__7. Add the parameters and the call the service:

__a. First you need to build an object that will hold the parameters for the service call. Add the
following code after the getValueSet function declaration statement:

 var params= new HttpConnectorParameters();

 params.url="http://cars.flashmx.us/makes";

 params.xpath= "//xml/node";

 params.columnXpaths= ["./make"];

 params.columnIds= ["Department"];

__b. To call the service with the provided parameters, add the following code:

CLM 2012 Process Enactment Workshop Page 200

IBM Software

var connector=
configuration.getDataConnector("HttpConnector");

var values= connector.get(params);

__c. If the parameters are well set and the call has succeeded, you will have the response for
the service in the values variable. The result array will be returned with the desired data.

Note that from this code template you can do whatever post-processing on the data you
wish to do to customize the values to be presented to the user.
In this example you will perform the same formatting as you did in Lab 4.

Add the following code before the return statement, replacing the 2 lines after var
result=[]; with this code:

while(values.hasNext()){

 var entry= values.next();

 var Dept= entry.getById("Department") + " Department";

 result.push(Dept);

 }

__d. The script code for the getValueSet() function should look like the following. Save your
changes.

CLM 2012 Process Enactment Workshop Page 201

IBM Software

__8. Reload the script.

__a. Go back to the Attribute Customization editor. If you have closed it or navigated away
from it, open the Project Area editor, switch to the Process Configuration tab and open
the Configuration > Project Configuration > Configuration Data > Work Items >
Attribute Customization section. Locate the customization type Value Set, expand its
node and click at the customization.

__b. In the Configuration editor section press Reload to upload the changes.

__c. Save the Process configuration change.

__9. Configure the Attribute for the new Attribute Customization

__a. Open the Configuration > Project Configuration > Configuration Data > Work Items
> Types and Attributes section.

__b. Select the Technology Review work item type. Scroll down to the Attributes section.

__c. In the Attributes section check the “Show only custom attributes” check-box to narrow
down your search.

CLM 2012 Process Enactment Workshop Page 202

IBM Software

__d. Locate and select the custom attribute Affected Departments. Press the Edit button.

__e. Use the drop down button Value Set to select the Department Provider Scripted

__f. Click OK and save the changes to the process configuration.

__10. Test your new Value Set.

__a. Create a new work item of Type Technology Review.

__b. Open the Tech Review Details Tab.

__c. Press the Add... button on the Affected Departments attribute.

__d. You see the values retrieved from the service and presented formatted as below

This appendix section has shown you how the same example that we configured in Lab 4 to call an
external service, can be also reproduced using the scripting technologies that you learned in this lab.
This specific case has lots of potential uses to integrate information sources in your enterprise where the
service call needs some sort of customization based. For example, to address work items attribute
values or for returning results needed when post-processing complex computation.

CLM 2012 Process Enactment Workshop Page 203

IBM Software

5.12 Appendix D – Changes in 4.0.3 attribute customization script based
editor

This lab was originally developed and tested with Rational Team Concert 4.0 and 4.0.0.1 versions. If you
are running the lab with a 4.0.3 or greater version, you will find some differences in the configuration
editor for Script Based Attribute Customization. The new configuration editor looks like the following:

The main differences you have to keep in mind while following the instructions of this lab in a 4.0.3
environment are:

CLM 2012 Process Enactment Workshop Page 204

IBM Software

• When you are instructed to download the script sample and modify
it: you have to first click the Fill in example hyperlink. The sample
scripts contents will be loaded in the in place editor window and
then you can either:

◦ Directly follow the lab instructions filling contents in the in place editor

◦ Click Save As to edit it from your eclipse workspace.

CLM 2012 Process Enactment Workshop Page 205

IBM Software

• When you are instructed to click Reload :

◦ No reload is needed if you edited the script using the in place editor

◦ Otherwise, you will need click Load to upload the new contents from the
file system. Then you can Save your process changes

You can find additional details in the blog post Script based attribute customization in RTC 4.0.3:
configuration editor improvements.

CLM 2012 Process Enactment Workshop Page 206

http://jorgediazblog.wordpress.com/2013/08/09/script-based-attribute-customization-in-rtc-4-0-3-configuration-editor-improvements/#more-795
http://jorgediazblog.wordpress.com/2013/08/09/script-based-attribute-customization-in-rtc-4-0-3-configuration-editor-improvements/#more-795

IBM Software

Appendix A Glossary

Term Definition

Practice (specific to JTS)

Practice (specific to RMC)

Process Definition

Process Description (general)

Process Description (specific to RTC)

Process Enactment

Process Nature

Process Template

Project Area

Published Process

Rational Method Composer (RMC)

Rational Team Concert (RTC)

Task Descriptor

Work Item Template

CLM 2012 Process Enactment Workshop Page 207

Appendix B Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

IBM Software

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

CLM 2012 Administration Workshop Page 210

IBM Software

Appendix C Trademarks and copyrights

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. See Java Guidelines

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Other company, product and service names may be trademarks or service marks of others.

Appendix Page 211

IBM Software

© Copyright IBM Corporation 2012

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks or registered

trademarks of International Business Machines Corporation in the

United States, other countries, or both. If these and other IBM

trademarked terms are marked on their first occurrence in this

information with a trademark symbol (® or ™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at

the time this information was published. Such trademarks may also

be registered or common law trademarks in other countries. A current

list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml

Other company, product and service names may be trademarks or

service marks of others.

CLM 2012 Administration Workshop Page 212

	Lab 1 Install the Environment
	1.1 Install Overview
	1.2 Web Install
	1.2.1 Download Files

	__1. Create a directory in the root folder of your local disk called C:JSWorkshops. Create a sub-directory named Downloads. You will download all files into this directory.
	__2. Download and install Firefox http://www.mozilla.org/en-US/firefox/organizations/all.html
	__a. Select the Firefox > Options and change the following settings:
	__i. General tab
	__a. Save files to C:JSWorkshopsDownloads
	__ii. Content tab
	__a. Turn off “pop-up blocking”. CLM applications sometimes use pop-ups for logging in.
	__iii. Advanced
	__a. Select Never check for updates. As of this writing, Firefox 10 is the version supported by CLM, so you should keep it at that level.
	__3. Download CLM 4.0.x
	__a. Go to the All Downloads tab on the CLM 4.0.0.1 download page (or the page for the latest version of CLM).
	__4. In the Web Installers section, download the zip file for Windows x86 (or the platform you're using), into C:JSWorkshopsDownloads folder
	1.2.2 Install the Server

	__1. Install the JTS and RTC applications.
	__a. Use 7Zip (or the application of your choice) to unzip the downloaded CLM web installer into a sub-directory of the Downloads folder.
	__b. In the chosen sub-directory execute launchpad.exe.
	__c. In the first window, select the link Install the Jazz Team Server and Applications. Then select Express Install.
	__d. In the installation window, select the link Jazz Team Server with Required Base Keys, including Trials, and CCM, QM and RM Applications.
	
	__e. Log in to Jazz.net using your regular Jazz.net registered user credentials if asked.
	__f. In the first window, select the following packages: “Installation Manager”, “Change and Configuration Management”, “Jazz Team Server” and “license keys”.
	__g. Select Next.
	__h. Read the license agreement and if you accept, select Next.
	__i. If you installation manager the first time on this machine, change the Shared Resources Directory to C:JSWorkshopsIBMIBMIMShared, and change the Installation Manager directory to C:JSWorkshopsIBMInstallation Managereclipse. Select Next.
	
	__j. Change the installation directory to C:JSWprkshopsIBMJazzTeamServer. If you're running on a 64-bit system, make sure the Architecture Selection is 64-bit. Select Next.
	__k. Select any additional languages, then select Next.
	__l. Verify that you are installing the correct applications, then select Next.
	
	__m. Make sure Install Tomcat 7 Is selected under Web Application Location. Select Next.
	__n. Make sure Use default 3.x/4.x application context roots is selected under Context Root Options. Select Next.
	__o. Verify the installation options, then select Install.
	__p. On the final page displayed when installation is complete, select None, then Finish.
	1.2.3 Install the Client

	__1. Install the Rational Team Concert Eclipse client
	__a. Return to the Launchpad window (restart launchpad.exe if it is not open) and under Install Optional Tools select the link for Rational Team Concert – Client for Eclipse IDE. Installation Manager will launch.
	__b. Log in to Jazz.net using your regular Jazz.net registered user credentials if asked.
	__c. On the first screen, select Rational Team Concert – Client for Eclipse. Make sure Version 4.0.0.1 is also checked (or the latest version), then select Next.
	__d. Read the license agreement and if you accept it, select Next.
	__e. Change the installation directory to C:JSWorkshopsIBMTeamConcert.
	__f. Under Architecture Selection, select 64-bit. Select Next.
	__g. Do NOT check Extend an existing Eclipse. Select Next.
	__h. Select any additional languages, then select Next.
	__i. In Select the features to install, make sure Rational Team Concert – Client for Eclipse IDE 4.0.0.1 is selected. Do NOT select Sametime Integration Update Site. Select Next.
	__j. Under Common Configurations, select Access help from the Web. Select Next.
	__k. On the review page, make sure the installation directories and packages are correct, and select Install.
	__2. After the installation completes, close the Launchpad.
	1.3 Installation Manager Install
	1.3.1 Download Files

	__1. Go to the All Downloads tab on the CLM 4.0.0.1 download page (or the page for the latest version of CLM).
	__a. Scroll Down to the section “Installation Manager Repositories”
	__b. If it is not already installed, download IBM “Installation Manager” to C:JSWorkhsopsDownloads and install it
	__i. Use C:JSWorkshopsIBMInstallation Manager as install location
	__ii. Use C:JSWorkshopsIBMIBMIMShared as shared location if asked
	__c. Download the “Jazz Team Server and CCM, QM, and RM Applications with Trial licenses for Rational Team Concert, Rational Quality Manager, and Rational Requirements Composer” Installation Manager Repository to C:JSWorkshopsDownloads
	__i. Use 7Zip (or the application of your choice), to decompress the downloaded repository into a sub folder.
	__d. Download the “Client for Eclipse IDE” Installation Manager Repository to C:JSWorkshopsDownloads
	__i. Use 7Zip (or the application of your choice), to decompress the downloaded repository into a sub folder.
	__2. Start Installation Manager and use the File > Preferences menu and add the repositories:
	__a. Navigate to the Repositories menu. Repeat the following steps two times, for two downloaded repositories:
	__i. Select Add Repository...
	__ii. Select Browse and navigate to the location where you unzipped the downloaded repository. Select OK.
	__b. Select OK.
	__c. Make sure you uncheck Search service repositories during installation and updates.
	__d. Select OK.
	1.3.2 Install the Server

	__1. On the Installation Manager Main page select Install.
	__a. On the first page of the install, select “Change And Configuration Management” and “Jazz Team Server”. You can select “Requirements Management” and “Quality Management” also to install these applications, but they are not required.
	__b. Select Next.
	__c. Read the license agreement and if you accept, select Next.
	__d. Change the Shared Resources Directory to C:IBMIBMIMShared or C:JSWorkshopsIBMIBMIMShared. Select Next.
	__e. Change the installation directory to C:JSWorkshopsIBMJazzTeamServer.
	__f. If you're running on a 64-bit system, make sure the Architecture Selection is 64-bit. Select Next.
	__g. Select any additional languages you want to install, then select Next.
	__h. Verify that you are installing the correct applications, then select Next.
	__i. Make sure Install Tomcat 7 Is selected under Web Application Location. Make sure Use default 3.x/4.x application context roots is selected under Context Root Options. Select Next.
	__j. Verify the installation options, then select Install.
	__k. On the final page displayed when installation is complete, select None, then Finish.
	1.3.3 Install the Client

	__1. Return to the Installation Manager Main window (restart Installation Manager if it is not open) and select Install.
	__a. Under Install Optional Tools select the link for Rational Team Concert – Client for Eclipse IDE then select Next.
	__b. Read the license agreement and if you accept it, select Next.
	__c. Change the installation directory to C:JSWorkshopsBMTeamConcert.
	__d. Under Architecture Selection, select 64-bit. Select Next.
	__e. Do NOT check Extend an existing Eclipse. Select Next.
	__f. Select any additional languages, then select Next.
	__g. In Select the features to install, make sure Rational Team Concert – Client for Eclipse IDE 4.0.0.1 is selected. Do NOT select Sametime Integration Update Site. Select Next.
	__h. Under Common Configurations, select Access help from the Web. Select Next.
	__2. On the review page, make sure the installation directories and packages are correct, and select Install.
	1.4 Plain ZIP Install
	1.4.1 Download Files

	__1. Go to the All Downloads tab on the CLM 4.0.0.1 download page (or the page for the latest version of CLM).
	__a. Scroll Down to the section “Plain .zip Files”.
	__b. In the Plain .zip Files section, download the compressed “Jazz Team Server and the CCM Application, and Trial licenses for Rational Team Concert” file for Windows x86 (or the platform you're using) to C:JSWorkshopsDownloads.
The File is most likely named JTS-CCM-keys.XXXX_YYYY with XXXX representing the architecture and YYYY representing the version.
	__c. In the Plain .zip Files section, download the compressed “Client for Eclipse IDE” file for Windows x86 (or the platform you're using) to C:JSWorkshopsDownloads.
The File is most likely named RTC-Client-XXXX_YYYY with XXXX representing the architecture and YYYY representing the version.
	1.4.2 Install the Server

	__1. Select the JTS-CCM-keys-XXXX_YYYY.zip and use 7Zip to extract the content to C:JSWorkshopsIBMJazzTeamServer The server will be ready to be used once the package gets uninstalled.
	1.4.3 Install the Client

	__1. Select the RTC-Client-XXXX_YYYY.zip and use 7Zip to extract the content to C:JSWorkshopsIBM The client will be ready to be used once the package gets uninstalled.
	__2. Your folder C:JSWorkshopsIBM should now look like below
	1.5 Summary
	1.6 Appendix A – Install Tips

	Lab 2 Set Up the Environment
	2.1 Set Up The Server Environment
	2.1.1 Create an Alias for the host name

	__1. To be able to use fully qualified domain names without actually having to change the domain name server, use a host Alias.
	__a. Open the hosts file for editing as an administrator by right-clicking Notepad.exe and clicking Run as Administrator. On Windows, the hosts file is located at C:WindowsSystem32driversetchosts.
	__b. Add the following line to the bottom of the file: 127.0.0.1 clm.process.ws
	__c. Save and close the file.
	2.1.2 Configure Tomcat Ports

	__1. Configure Tomcat to serve applications on HTTP and HTPPS well known default ports:
	__a. Open the server configuration file C:JSWorkshopsIBMJazzTeamServerservertomcatconfserver.xml for editing.
	__i. Look for the string '9443'
	__ii. Change all the occurrences in non-commented nodes of that port and redirectPort attribute value to 443
	__iii. Perform another search looking for the string '9080'
	__iv. Change the occurrences in non-commented nodes of that port attribute value to 80
	The resulting nodes for HTTP and HTTPS will look like the following:
	__b. Save your changes and exit.
	2.1.3 Server Language

	__1. Modify server startup language setting
	__a. Open C:JSWorkshopsIBMJazzTeamServerserverserver.startup with an editor
	__b. Add -Duser.language=en to the end of the JAVA_OPTS in C:JSWorkshopsIBMJazzTeamServerserverserver.startup. The file should now look as below:
	__2. Save your changes
	2.1.4 Web UI Language

	__1. In Firefox open Tools>Options
	__a. In the options navigate to Content
	__b. If you have not yet done that, deactivate the Pop-Up blocker
	__c. Click on the Choose... button in the Languages section at the end.
	__d. Add English [en] as language and use the move up button to bring it to the top.
	2.2 Set Up the RTC Server
	__1. Set up the CLM applications and JTS server

	__a. Startup the JTS server by running C:JSWorkshopsIBMJazzTeamServerserverserver.startup.
	__b. Open a browser and run setup by navigating to https://clm.process.ws/jts/setup. Ignore any security warnings and add a security exception if asked.
	__c. Log in to JTS using as login/password: ADMIN/ADMIN.
	__d. Select Express Setup, then Next.
	__i. In Configure Public URI, assure https://clm.process.ws/jts is the Public URI.
	__a. Select I understand that once the Public URI is set, it cannot be modified, then select Next.
	__ii. On the Create User page, create the PEW admin user then select Next:
	__a. User ID: pewadmin
	__b. Name: pewadmin
	__c. Password: pewadmin
	__d. Email: pewadmin@bogus.ws
	__iii. Select Next when Express Setup is complete.
	__e. On the Assign Licenses page:
	__i. Under Rational Team Concert, next to Rational Team Concert – Developer, select Activate Trial if you are asked for activation. You can optionally do the same for Rational Requirements Composer – Analyst and Rational Quality Manager – Quality Professional, if you deployed that applications as well.
	__ii. Make sure the Rational Team Concert – Developer is checked, so it will be assigned to the pewadmin user.
	__iii. Select Finish.
	__f. On the Server Administration page, select the link for Create Users and enter the following values, then select Save:
	__i. Username: Jim,
	__ii. User ID: jim
	__iii. email address jim@bogus.ws
	__iv. Repository permissions: JazzAdmins (you can leave the default selected JazzUsers too).
	__v. Assign a License of type: Rational Team Concert – Developer.
	2.3 Set Up the RTC Eclipse Client Software
	2.3.1 Eclipse Client Language

	__2. Modify the user setting:
	__a. Open the file eclipse.ini in C:JSWorkshopsIBMTeamConcert or if you installed the plain ZIP version in C:JSWorkshopsIBMjazzclienteclipse
	__b. Add -Duser.language=en to the end of the file. It should now look like below
	Again, this sample setting would enforce the client language to English. Set the property to the appropriate locale value if you want a different language.
	2.3.2 Eclipse Client User Preferences

	__1. Set up the Rational Team Concert Eclipse Client
	__2. If you did a Web Install or an Installation Manager Install, select Start > All Programs > Rational Team Concert Client > Rational Team Concert Client. If you installed the plain ZIP version open the file eclipse.exe in C:JSWorkshopsIBMjazzclienteclipse.
	__a. When asked to select a workspace, enter C:JSWorkshopsWorkspacesLab1.
	__b. Close the Welcome view.
	__3. Set up preferences for RTC.
	__a. Select Window > Preferences
	__b. In Team > Jazz Source Control > Check-in Policies, select the following:
	__i. Auto check-in local changes
	__ii. Perform check-in whenever a resource is modified
	__iii. Leave all other settings as-is.
	__iv. Select OK.
	__c. Configure external browser for Eclipse client:
	__i. Open Window > Preferences
	__ii. Navigate to General > Web Browser
	__iii. Make sure you check Use external web browser. Select OK.

	__4. Create connections to the process and software development RTC repository
	__a. Switch to the Jazz Administration perspective.
	__b. Select Create a Repository Connection in the Team Organization view. Enter the following information, and select Finish. Accept any certificates when prompted.
	__i. URI: https://clm.process.ws/ccm
	__ii. Name: SoftwareDev
	__iii. UserID: jim
	__iv. Password: jim
	__c. Switch to the Team Artifacts view and you'll see the repository connections.
	2.4 Create a Test Project

	__1. Switch to the Jazz Administration perspective and select the Process Template view.
	__a. Deploy the process templates if necessary, by clicking the Deploy Predefined Templates icon. Select OK when prompted and wait for the operation to finish.
	__b. Expand the repository connection node, right-click on the OpenUP Process template in the repository. Select New > Project Area.
	__c. Create a project with the following attributes, then select Next:
	__i. Name: Nifty Application Project
	__ii. Summary: The project for the Nifty application.
	__d. Select Automatically initialize the Project Area on Finish as specified in the process template. Then select Finish.
	__2. The project area is created and a view of the project is displayed. Add the following customization:
	__a. Expand the Members section of the Overview tab.
	__i. Add the user Jim to the members and add the following process roles to Jim (in the order listed below, which will cause the Project Manager to be the first assigned role listed for Jim), then select Finish:
	__a. Stakeholder
	__b. Developer
	__c. Project Manager
	__ii. Make sure the roles are top-down Manager, Developer, Stakeholder and everyone.
	__b. Save the project.
	__c. Review the project and its process.
	__i. Categories
	__ii. Timelines
	__iii. Process Configuration
	2.5 Summary
	2.6 Appendix A – Additional Considerations

	Lab 3 Configuring Work Items
	3.1 Customize the Process in RTC
	3.1.1 Understand the new needs
	3.1.2 Create a new Work Item Type with Custom Attributes
	__1. Create a Work Item Type. You are going to model the work product Technology Review as a new type of work item.
	__a. Open the Rational Team Concert eclipse client if not already open, and switch to the Work Items perspective.
	__b. Open the project editor if needed by right-clicking Nifty Application Project and selecting Open in the Team Artifacts view.
	__c. Open the Process Configuration tab, and navigate to Project Configuration > Configuration Data > Work Items > Types and Attributes.
	__d. Click Add... in the Types and Attributes section in the right side. Enter the following values and select OK:
	__i. Name: Technology Review
	__ii. ID: com.acme.openup.workitem.workitemType.technology_review
	__iii. New Category (CHECKED): com.acme.openup.workitem.workitemTypeCat.technology_review
	__e. Click the Icon drop-down and select architectural.gif
	__f. Save your changes.
	__2. Add Custom Attributes. You have reviewed the Key Considerations section of Artifact: Technology Review (3.1.1 Understand the new needs on page 36) and have identified the custom attributes to define in Rational Team Concert for the new work item type. Perform the following steps to create them:
	__a. Select the Types and Attributes node in the Configuration Data > Work Items tree if not already there
	__b. Make sure Technology Review Work Item Type is selected
	__c. Navigate to the Attributes section at the bottom of the page.
	__d. Select Add …
	__e. Enter the following values:
	__i. Name: Technology Name
	__ii. ID: com.acme.openup.workitem.attribute.techname
	__iii. Type: Medium String
	__iv. Leave the rest of the parameters with the default value
	__v. Select OK.
	__f. Repeat steps d-e with the following information:
	__3. Reuse existing attribute for Impact information:
	__a. Select Add …
	__b. Check Reuse Existing Attribute and select “Impact – type: risk (Enumeration)” from the drop-down list
	__c. Select OK.
	__d. Save your changes.
	__4. Define enumeration for the complexity attribute:
	__a. Select the Enumerations node in the Configuration Data > Work Items tree
	__b. Select the Add... button located below Choose the Enumeration to edit
	__c. Enter the following values and select OK:
	__i. Name: Complexity
	__ii. com.acme.openup.enum.complexity
	__iii. Process Specification: CHECKED
	__d. Select Add... at the Enumeration Literals section, and enter the following values for the “Name” attribute of each literal value, you can leave the “External Value” field empty: (assign icons as you will)
	__i. Select the value Manageable for Default Literal and Unassigned Literal
	__e. Create the attributes for the enumeration:
	__i. Navigate back to the Types and Attributes node in the Configuration Data > Work Items tree
	__ii. Make sure Technology Review Work Item Type is High-lighted
	__iii. Navigate to the Attributes section at the bottom of the page.
	__iv. Select Add …
	__v. Enter the following values, then select OK:
	__a. Name: Complexity
	__b. com.acme.openup.workitem.attribute.complexity
	__c. Type: Complexity (Enumeration)
	__f. Save your changes.
	__g. At the top of the Attributes section, if you check Show only custom attributes, you should see something like the following:
	3.1.3 Create a Workflow
	__1. Define the workflow. Your organization's Process Engineer described the transition table matrix that will govern the lifecycle of the work product. Now you will create a work item workflow matching that description.
	__a. Select the Workflows node in the Configuration Data > Work Items tree.
	__b. Select Add... next to the Choose the workflow to edit field.
	__c. Enter the following values and then select OK:
	__i. Name: Technology Review Workflow
	__ii. ID: tecReviewWorkflow
	__d. Navigate down to the States section. Click Add... button and create the states with the following information: (assign icons as you will)
	__e. Create the actions in the transition matrix: navigate to the Transitions section of the page and perform the following changes:
	__i. In the combination From “Proposed” To “Under Research”, click the combo box and select New Action...
	__ii. Enter Research as the name and select OK.
	__iii. Repeat steps i – ii, with the rest of the actions until you build the following transition table (which maps with the table matrix described in Rational Method Composer provided to you earlier in this lab in 3.1.1 Understand the new needs on page 36):
	__f. Define the start action:
	__i. Select the combo box next to Start Action and click New Action...
	__ii. Enter Propose as name and Proposed as Target State. Select OK.
	__g. Define the resolutions: you want to further explain the possible rejections of a new technology.
	__i. Navigate to the Resolutions section.
	__ii. Click Add...
	__iii. Enter Inaccurate as the name and Closed as the Group. Select OK.
	__iv. Repeat the steps to include a resolution called Extreme Impact member of Closed Group.
	__h. Navigate back to the Actions section of the page and configure resolutions:
	__i. Select the Reject action in the left panel
	__ii. Mark the check box next to both resolutions in the right side.
	__i. Save your changes.
	__j. Associate the workflow to the work item:
	__i. Navigate to the Types and Attributes node under Work Items
	__ii. Choose Technology Review under Work Item Types
	__iii. Navigate to Workflow section, expand the combo and select Technology Review Workflow
	__iv. Save your changes.
	3.1.4 Customize the Presentation For the Work Item Type
	__1. Customize the presentation for the work item.
	__a. Select the Editor Presentations node in the Configuration Data > Work Items tree.
	__b. For ease of use, you will create a presentation based on the existing one, customizing it to hold the required attributes. Make sure in the Choose editor presentation to edit box the com.ibm.team.workitem.editor.default is selected, and select Duplicate …
	__c. Enter the following ID and select OK: com.acme.openup.workitem.editor.techreview
	__d. Adjust presentation of attributes: you based your presentation in the default one which is used by Task work items. As the Technology Review work item is a specialized type of task, you will be just adding a specialized tab for the new information and reusing the rest of the editor presentation.
	__i. Select Add Tab … and enter the following values, then select OK.
	__a. Title: Tech Review Details
	__b. Layout: Custom Attributes Layout
	__c. Create Tab ID: CHECHED
	__d. ID: com.acme.openup.workitem.tab.techrevdetails
	__ii. High-light the new created tab and select Add Section …. Enter the following values, then select OK.
	__a. Title: Adoption Cost Estimations
	__b. Slot: Left
	__c. Create Section ID: CHECKED
	__d. ID: com.acme.openup.workitem.section.techcostdetails
	__iii. Repeat the previous steps to add a new section with the following details:
	__a. Title: Tech Review Miscellaneous
	__b. Slot: Right
	__c. Create Section ID: CHECKED
	__d. ID: com.acme.openup.workitem.section.techgeneralinfo
	__iv. Highlight Adoption Cost Estimations section and click Add Presentation... for each of the items listed below. (do it in the order of appearance. All of them are “Attribute based”):
	__v. Now highlight Tech Review Miscellaneous section and click Add Presentation... for each of the items listed below (do it in the order of appearance):
	__e. Highlight the Tech Review Details tab and click Move Up until you place it just after the Overview tab.
	__f. Save your changes.
	__g. Link the presentation to the work item:
	__i. Navigate to the Types and Attributes node under Work Items.
	__ii. Make sure Technology Review Work Item Type is High-lighted under Work Item Types
	__iii. In the Work Item Editor box, select com.acme.openup.workitem.editor.techreview
	__iv. Save your changes.
	__h. Check the presentation.
	__i. Select the arrow next to the New Work Item icon:
	__ii. Select Nifty Application Project > Technology Review. A new work item appears
	__iii. Select the Tech Review Details tab. It should look like the following:
	3.1.5 Configure Permissions
	__1. Adjust permissions for attributes and workflow states: you have to give permissions to the roles for the new items created in the process.
	__a. Return to the project area editor and select Permissions under Team Configuration node.
	__b. Check the option to Show all actions and roles
	__c. According to the information you were given (see 3.1.1 Understand the new needs on page 36), the Developer is the role responsible of modifying the Technology Review work product. In addition, you will grant the Tester role the needed permissions for the phases of lifecycle in which his collaboration is required for the Technology Review. To adjust the process:
	__i. Adjust permissions to the attributes:
	__a. Open the node Work Items > Save Work Item (server) > Modify the work item
	__b. Give the Developer role the only one to modify the created attributes (remove the permissions to the Project Manager role):
	__ii. Adjust permissions for workflow:
	__a. Open the node Work Items > Save Work Item (server) > Create a work item > Create a work item of a specific type
	__b. Under Create a 'Technology Review' work item, CHECK the boxes for the Developer and Tester roles, and UNCHECK for the rest of the roles.
	__c. Open the node Save Work Item (server) > Trigger a workflow action
	__d. Make sure the Developer role is the only one with permission to modify the actions which have in parenthesis the string “(Technology Review workflow)”. Give also permission to the Tester role for the actions of Propose and Reject.
	__d. Save your changes.
	3.2 Gather the process changes
	__1. Generate the process template from the Project Area:
	__a. Switch to the Jazz Admin perspective, and open the Team Artifacts view
	__b. Right-click the project area Nifty Application Project and select Extract Process Template...
	__c. Give it the following values and select Finish.
	__i. Name: Acme OpenUp Nifty Based
	__ii. ID: openup.process.acme.nifty.ws
	__iii. Summary: Acme Corporation's OpenUP Process
	__2. Export the Process Template:
	__a. Back in the Process Templates view, right-click your newly created template called Acme OpenUp Nifty Based and select Export.
	__b. Select C:JSWorkshopsDownloads as the directory and click Finish.
	3.3 Summary

	Lab 4 Work Item Customization
	4.1 Default Value Provider
	4.1.1 Default values for attributes of type Contributor

	__1. Open the RTC Eclipse Client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in as user jim password jim.
	__2. Go to the Team Artifacts view.
	__3. Right click at the Nifty Application Project project area in the Team Artifacts view and select Open to open the Project Area Editor for your project.
	__4. Switch to the Process Configuration tab and navigate to the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__5. Create a new Default Value Attribute Customization Configuration.
	__a. In the Attribute Customization editor, click the Add button at the bottom of the editor to add a new Attribute Customization configuration.
	__i. Enter LoggedInUser as Name of the configuration.
	__ii. As Type select Default Values.
	__iii. Use the Provider selection drop down box to select a provider. Read through the list of available providers and select the provider User. The drop down list shows the available built-in provider for the selected configuration Type. For Default Values RTC has configurable built-in providers for several attribute types.
	__iv. Click OK.
	__b. Now the new default value attribute Customization is created. To make it work it needs additional configuration which is done in the Configuration editor to the right. If the configuration editor is not visible, the Customization is not selected. Expand the Default Values node if necessary to see the LoggedInUser Attribute Customization you just created to see the configuration editor.
	__i. Review the current configuration. There are two options:
	Select a specific user
	Select the Authenticated User. The Authenticated User is the user that is currently logged in
	__ii. Select the Authenticated User radio button.
	__c. Save the change to the process configuration. You have successfully created a Default Value Provider.
	__6. Now the value provider needs to be configured for the attribute:
	__a. In the Project Area editor Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__b. Select any work item type that has the attribute you want to configure. In our case for example the work item type Defect
	__c. Scroll down to the Attributes section, browse for the Attribute named Owned By. Right-click the row and select Edit...
	__d. The attribute editor comes up and displays the properties of the attribute. Note that the Default Value section is now enabled. Click at the drop down list and select LoggedInUser.
	__e. Make sure that the default value provider LoggedInUser is selected and press OK.
	__f. The columns should now show the new default value provider.
	__g. Save your changes to the process configuration.
	__7. Test the new Default Value Provider.
	__a. Create a work item such as a Defect, Task, Story or Epic.
	__b. Check that the Owned By attribute now defaults to the current user.
	4.1.2 Role Based Enumeration Default

	__1. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the user jim password jim. Open the Project Area editor for your Project.
	__2. Switch to the Project Area editor Process Configuration tab. Open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. Press the Add button at the bottom of the editor to add a new configuration.
	__i. As Name enter Default Priority by Role.
	__ii. As Type select Default Values.
	__iii. As Provider select Role Based Enumeration Default from the drop down list.
	__iv. Select OK
	__b. The Editor for the Attribute Customization configuration should now show the Details and the Configuration editor section editor to the right.
	__i. Use the Select... button and select the enumeration named priority.
	__c. The configuration editor now shows the roles available in the order defined in the process configuration. Select the default priority Literal for each role.
	__i. Project Manager and Architect: High priority
	__ii. Analyst and Developer: Medium priority
	__iii. Stakeholder and Tester: Low priority
	__iv. Default and other roles: Unassigned.
	__d. The configuration should now look as follows. You might have additional roles that are not presented in the screen shot below.
	__e. Save the process configuration with your changes.
	__3. Now the Attribute customization needs to be applied to the Priority attribute of the work items:
	__a. On the Process configuration editor navigate to the Work Items > Types and Attributes section.
	__b. Select a work item type that has the priority attribute. In our case for example the work item type Defect.
	__c. Scroll down to the Attributes section, browse for the Attribute named Priority. Right-click the row and select Edit...
	__d. On the Attribute Editor, the Default Value selection drop down button should be enabled. Click at the button and select the Attribute customization Default Priority By Role.
	__e. Select OK.
	__f. Save the changes to the process configuration.
	__4. Test the default value provider
	__a. In the Project Area editor switch to the Overview tab. In the Members section select the user Jim and click the Process Roles... button to see the process roles assigned to him. The user Jim has the role Project Manager as the primary assigned role:
	__b. Create a work item and check if the priority is set to the default value (High) expected for this role.
	__5. Test how multiple roles work
	__a. In the Project Area editor switch to the Overview tab.
	__i. In the Members section select the user Jim and click the Process Roles... button to see the process roles.
	__ii. Select the Developer role in the Assigned Roles column and use the Up button to move it to the top of the list.
	__iii. Save the project area.
	__b. Create a work item of type Defect.
	__i. Check the priority. The default priority is now set to the default for the Developer role (Medium) which is your primary role now.
	__6. Change the roles setting for user Jim back to the original settings.
	__a. In the Members section select the user Jim and click the Process Roles... button to see the process roles.
	__b. Select the Developer role in the Assigned Roles column and use the Down button to move it to the second position of the list. See __4. __a. above for the desired setup.
	__c. Save the changes to the Project Area Process configuration.
	4.1.3 Optional: Review the other available default value providers.

	__1. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the user jim password jim. Open the Project Area editor for your Project.
	__2. Switch to the Project Area editor Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__3. Add a new Default Value in the Attribute Customization editor.
	__a. Select Default Value in the editor. Use the Add... button at the bottom of the page to add a new Attribute Customization configuration.
	__b. Select Default Value as Type.
	__c. Verify you have the following Providers available:
	__i. Boolean
	__ii. Category
	__iii. Duration
	__iv. Enumeration List
	__v. Iteration
	__vi. Multi-Line HTML
	__vii. Multi-Line Text
	__viii. Number
	__ix. Operating System
	__x. Role Based Enumeration Default
	__xi. Script Based Default
	__xii. Single Line HTML
	__xiii. Single Line Text
	__xiv. User
	__xv. User List
	__xvi. Wiki
	__4. Create a Default Value provider for all other available types except Script Based Default. Note: We will look into script based value provider in a separate Lab.
	__a. As name use the type name and append “default”. For example Enumeration List Default.
	__b. For each of the default value providers check out the Configuration Editor section.
	For the typical default values it is possible to enter some data and in several cases also to pick valid values from the project area. List types allow to select multiple values.
	The role based enumeration default allows to configure default values based on the role of the user that creates the work item. See the next section.
	The type Operating System does not have an editor. To configure the values you need to edit the process XML source. See: https://jazz.net/wiki/bin/view/Main/AttributeCustomization#Operating_System_default_value. In addition it works only with the Eclipse client. You can however create your own enumeration for this purpose.
	4.1.4 Summary
	4.2 Value Sets
	4.2.1 Dependent Enumerations

	__1. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the user jim password jim. Open the Project Area editor for the Nifty Application Project.
	__2. Switch to the Project Area editor Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__3. Add a new Value Set in the Attribute Customization editor.
	__a. Select Value Sets in the editor. Use the Add... button at the bottom of the page to add a new Attribute Customization configuration.
	__i. For Type select Value Sets if it is not already selected.
	__ii. Select Dependent Enumeration for Provider.
	__iii. Name the configuration Priority by Severity. Select OK.
	__b. Configure the Value Set in the Configuration section of the editor to the right.
	__i. Select Severity (Enumeration) as Source Attribute.
	__ii. Select Priority as Dependent Enumeration
	__c. Now you need to map the Dependent Enumeration values to the Source Attribute Values. In this step you define which values on the right in the Dependent enumeration are applicable if the value on the left is selected. This is just an example that shows the principle. We want to make sure that the priority for the work item is consistent with the severity of the work item.
	__i. Map the Severity value for the Default Value Set. The Default value set is the set of values that is allowed for the dependent enumeration for values of the source that are not specifically configured.
	__a. Select Default Value Set in the source attribute values.
	__b. Select the Low, Medium, High values as allowed in the Dependent Enumeration value list.
	__ii. Map the other Source Attribute Values
	__a. Leave the source value unclassified unspecified
	__b. Map the source value Minor to Low and Medium
	__c. Leave the source value Normal unspecified
	__d. Map the source value Major to Medium and High
	__e. Map the source value Critical to Medium and High
	__f. Map the source value Blocker to High
	__d. Save the changes to the process configuration.
	__4. Now configure the value set for the attribute Priority in the Types and Attributes Section.
	__a. Open the Work Items > Types and Attributes section.
	__b. Select the work item type Defect and scroll down to the Attributes section.
	__c. Double-click the Priority attribute to open the Attribute properties editor.
	__d. For Value Set, select Priority by Severity.
	__e. In the Dependencies section, select “+” and add the Severity attribute. This is necessary to enable the Value Set provider and make it recalculate its value with the value of the severity attribute in case this changes.
	The attribute should look like below
	__f. Click OK and Save the changes you just did.
	__5. Test your Attribute Customization
	__a. Open the overview tab of the project area editor and look at the user jim to check if the Project Manager role is the primary role. The first role in the process roles column is the primary role.
	__b. Create a Defect to test the change. As already mentioned, the customization affects the attribute across all work item types. So any work item type that has this attribute will be affected.
	__c. Note that the default severity is Normal. The default priority is high due to your customization of the priority. The value is valid for our value set.
	__i. Change the Severity to Minor Note that an indicator in front of the priority now shows that the value does not conform your value set.
	__ii. Change the Priority to Low. Click at the Priority attribute again. Now only Medium and Low are valid choices.
	__iii. Change the Severity attribute to Blocker. The Priority attribute set to Low is flagged as invalid again.
	__iv. Try changing the Priority attribute. There is only one choice available due to your value set.: High. Low is only displayed because it is the current value. Choose High as the new Priority.
	__d. Add the other required values and save the work item:
	__e. Assign a valid value to save the work item in case the save fails or abandon saving the work item.
	4.2.2 HTTP Filtered Value Set

	__1. Download the file PEWEnactmentData.war from the workshop on Jazz.net to C:JSWorkshopsDownloads in case you have not already done so.
	__2. First deploy the XML data. To be able to deploy it on an application server such as Tomcat, the data is wrapped into a WAR file that can be deployed.
	__a. Make sure the RTC Server is still running
	__b. Copy the file PEWEnactmentData.war from the download folder C:JSWorkshopsDownloads into the folder C:JSWorkshopsIBMJazzTeamServerservertomcatwebapps.
	__c. Open the Tomcat console and make sure the file is deployed.
	__d. In your Browser type https://clm.process.ws/PEWEnactmentData/ and make sure the browser shows the index page.
	__e. Follow the link to open the XML file.
	__3. Now open the Eclipse Client if it is not already opened and connect to your repository. Log in with the user jim password jim. Open the Project Area editor for your project.
	__4. Switch to the Project Area editor Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__5. Add a new value provider in the Attribute Customization editor.
	__a. Select Value Sets and use the Add.. button to create a new configuration.
	__i. For Type select Value Sets if it is not already selected.
	__ii. Select HTTP Filtered Value Set as the Provider.
	__iii. As Name for the value set enter Department Provider. Select OK.
	__6. Now you need to configure the Value Set in the Configuration section of the editor. The basic steps are to provide a URL to get the data and XPath expressions to select the data from the XML source and define how the data is displayed and returned to the work item.
	__a. First you need to provide the URL to the data source. Enter “https://clm.process.ws/PEWEnactmentData/makers.xml” in the XML data source URL configuration property.
	__b. Maximize the editor window by double clicking on the tab, or scroll the configuration editor window to the lower right corner until you see the Test button.
	__c. Press the Test button.
	__d. A window should come up. You will see an error. Hover over the error message to see the complete message displaying “Problems accessing 'https://clm.process.ws/PEWEnactmentData/makers.xml': peer not authenticated”
	__e. This error message is due to the default certificate being used with Tomcat.
	__f. Check the Ignore invalid SSL certificates at the lower left of the provider configuration and press the test button again.
	__i. You should still see an error, because the configuration is not yet correct. The output should look like below and using the Show/Hide Log button should provide you with the XML that was fetched if you scroll down a bit.
	__ii. If you see the error shown below and the log does not contain any XML, check the URL. You probably have a leading or trailing space in the URL. In production usage you might also want to check the Authentication settings and provide credentials, if required.
	__iii. If you can retrieve the XML, you can continue. Close the test window and save the process configuration.
	__7. In order to be able to use XPath to select the data from the XML file you need to understand the XML structure.
	__a. Open https://clm.process.ws/PEWEnactmentData/makers.xml in a browser. It should look like:
	__8. As described in Wikipedia, XPath is a query language for selecting nodes from XML and to compute data from the XML data. From the above data we want to look at the data in the node entries. The expression that selects the node data is //xml/node. It selects the nodes that matches the path selection xml/node in the document wherever they are. See http://www.w3schools.com/xpath/xpath_syntax.asp for more information.
	__a. Return to the Process Configuration view in RTC. Enter //xml/node in the Row XPath expression configuration property.
	__b. Now it is necessary to select the data from the node elements. You want at least the data in the <make> element. Enter ./make into the Column XPath expressions property.
	__c. Push the Test button in the lower right corner again. You should now see some values
	__d. Close the test window and save the process configuration.
	__9. The values displayed do not yet appear very user friendly. You want to work on the data to create a more usable value.
	__a. As visible column identifier enter Department into the Column identifiers configuration property. This is used to determine how many columns are available.
	__b. Currently we are only getting one column of data in a row. Enter ${0} Department into the Entry label format configuration property. This expression takes the column value, for example Acura, and adds the fixed string Department to it. This calculated string will be returned to the attribute making up our department names.
	__c. Check the Apply filter string to values received from the data source option to allow users to reduce the choices.
	__d. Leave Sort values received from data source unchecked.
	__e. Leave Ignore invalid SSL certificates checked.
	__f. You don't need to configure the Authentication Method for this example.

	__g. The configuration should now look like below.
	__h. Test the configuration using the Test button in the lower right corner of the Attribute customization editor again. You should now see a 'Department' postfix in the displayed values.
	__i. Save the changes you just did to the process configuration.
	__10. Now it is necessary to configure the attribute to use the HTTP filtered Value Set.
	__a. Open the Project Area editor switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__b. Select the Technology Review work item type. It is the only work item type with the Affected Department Attribute.
	__c. Scroll down to the Attributes section. In the Attributes section check the “Show only custom attributes” checkbox to narrow down your search.
	__d. Find the Affected Departments attribute and press the Edit button.
	__i. Use the drop down box button Value Set and select the Department Provider we just created. Select OK.
	__ii. Save the changes to the process configuration but leave the Project Editor open.
	__11. Test the HTTP Filtered Value Set you created.
	__a. Create a new work item of type Technology Review.
	__b. Switch to the Tech Review Details tab
	__c. In the Adoption Cost Estimations section look at the Affected Departments attribute.
	The attribute should show an Add... button. If the button does not show up, close the work item and repeat the steps from 10. Make sure to save the changes in the project area.
	__i. Press the Add... button and wait for the data to be retrieved. After a moment the Select a Value Window should show a window with a filter on top and some values below.
	__ii. Type 'I' (capital 'i') into the filter. Your choices in the Values field should now be reduced to entries starting with an 'I'. Select the International Department.
	__d. Repeat the steps above and add the Mini Department.
	__12. Close the work item, you don't have to save it.
	4.2.3 Refine the HTTP Filtered Value Set

	__1. Open the Project Area editor for your Project.
	__2. Switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. Open the configuration editor for the Department Provider Value Set you just created. Expand the node Value Set and select the Department Provider.
	__b. You want to modify the Column XPath expression to show an additional column. See the XPath Syntax for more information. You can add an additional column using the pipe symbol | and “./id” selects the ID in the XML. To make it more interesting we want to use operators to calculate a number using the ID.
	__i. Enter the XPath expression ./make | (200-./id) to the Column XPath expression property, to get two column values as result. The second column contains a value where the Id of the XML is subtracted from the constant value 200. The pipe symbol | separates the columns.
	__ii. Add | Identifier into the Column identifiers property.
	__iii. Add a ${1} statement to the Entry label format property, to insert the new column value in the front of the row.
	__iv. Your configuration should look like below:
	__v. Save the process configuration changes.
	__vi. Test the new configuration using the Test button at the bottom of the editor page.
	__vii. The result now shows a number in front of the department name counting down from 200-1. The list is no longer alphabetically sorted. In addition using the filter no longer works as expected. Setting a filter 12 shows all entries starting with 12, but providing a character shows nothing.
	__c. To get sorting back, close the test window and check the property 'Sort values received from data source' to get it sorted again.
	__i. Test the setting. Now it is sorted by the leading number.
	__d. You want to get the filtering back, regardless how the output will finally look like and you would like to filter by department name. The filter value can be passed to the XML data source URL and the Row XPath expression as ${filter} and used there.
	__i. In the Row XPath expression property enter //xml/node[starts-with(./make, '${filter}')] This selects only the node elements that have a “make” element that starts with the string from the filter. Clear the property 'Apply filter string to values received from data source'. Your data source is already filtered and leaving this checked would result in no output because the filter would filter the whole entry label. Your Configuration should look like this now:
	__ii. Test the value set provider and enter 'I' (capital 'i') as filter. The values displayed should only show departments starting with 'I'. If you type a small 'i' character, the result will be empty. Upper or lower case makes a difference.
	__iii. Close the test window.
	__e. You finally decide you like the department number but would rather have it at the end of the string and not modified.
	__i. Change the Entry Label format property to ${0} Department (${1})
	__ii. Remove the calculation and pass the original ID by changing the Column XPath expressions property to ./make | ./id
	__iii. Leave all other settings. The configuration should look like
	__f. Use the Test button to test if the configuration works. You should get something like the following
	__3. Close the test window and save the process changes to the project area to keep your settings.
	You have successfully created a HTTP based filtered value set provider.
	4.2.4 Additional Information for HTTP based filtered value providers
	4.2.5 Role Based User List

	__1. Open the Eclipse Client, if it is not already opened, and connect to your repository. Log in with the user jim password jim. Open the Project Area editor for your Project.
	__2. Switch to the Project Area editor Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__3. Select Value Sets in the editor. Use the Add... button at the bottom of the page to add a new Attribute Customization configuration.
	__a. For Name enter Responsible Architect.
	__b. For Type make sure to select Value Sets.
	__c. As Provider select Role Based User List.
	__d. Press the OK button.
	__e. Now configure the new Value Set.
	__i. In the configuration editor press the Add Role... button to add a role configuration. In the configuration dialog you can select a process area where the role comes from and the role to select the user.
	__ii. For the configuration Role Comes From choose Work Item's Project Area.

	__iii. From the available roles select Architect.
	__iv. Click OK.
	__v. It is possible to add additional configurations for where the role comes from and which role to choose by repeating the previous steps.
	__f. Save the changes to the process configuration.
	__4. Now it is necessary to configure the attribute to use the Role Based User List. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__a. Select the Technology Review work item type. Scroll down to the Attributes section.
	__b. In the Attributes section check the Show only custom attributes checkbox.
	__i. Select the custom attribute Responsible Architect and click Edit....
	__ii. In the Custom Attribute editor for the Responsible Architect attribute select the Responsible Architect Role Based User List using the Value Set drop down button.
	__iii. Click OK and save the process changes to the process configuration.
	__5. Check the project area Members and make sure that one or more members have the Architect role. If you add some Architect Roles to users, make sure to save the changes before you continue.
	__6. Open a work item of type Technology Review. If you have such a work item already open close it first and re-open it to make sure the value set is available to the editor.
	__a. Open the Tech Review Details tab of the work item.
	__b. Click on the Responsible Architect attribute. The drop down list should show the users available in the project area with the role Architect.
	__c. You can still assign other users using the More... button at the end of the drop down.
	__7. You don't have to save the work item at this time.
	4.2.6 Summary
	4.3 Validators

	__3. Open the Eclipse Client if it is not already opened and connect to your repository. Log in with the user jim password jim. Open the Project Area editor for the Nifty Application Project.
	__4. Switch to the Project Area editor Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__5. Use the Add... button to add a new Attribute Customization.
	__a. Select Validators as the Type.
	__b. Inspect the configuration property Provider. You can choose from Number Range, Regular Expression and Script based Validation.
	__i. Basically you could try using a number range as validator. The number range checks if a number is in a certain range. Unfortunately this validator works only for number types and is therefore not usable in the current example where all attributes are of a string type. So you need to select Regular Expression as the Provider. The regular expression works with string types.
	__c. Change the Name to Effort Validator and click OK.
	__d. On the configuration editor you can now configure your regular expression. For some information on regular expressions have a look at this Wikipedia link. It refers to additional tutorials.
	__i. Choose an Error in the Decoration Icon property.
	__ii. You want to accept input like 1d for one day and we want to support weeks, months etc. In the Message configuration property enter Format: Any number optionally followed by m, w, d, h for month, weeks, days...
	__iii. In the Regular Expression configuration property enter (d*m)|(d*w)|(d*d)|(d*h)|(d*) It validates to true for inputs with a number prefix and allow to input m, w, d, h or leave the suffix out.
	__iv. Check the Case sensitive checkbox. We only want to accept small characters.
	__a. Enter some samples in the sample text input to test your expression and validate that you get an error for values that are wrong.
	__b. If you hover over the error marker you get to see the description.
	__v. Save the changes to the process configuration.
	__e. Create another Validator for the cost attributes.
	__i. Enter Cost Validator as Name.
	__ii. Choose Validator as Type.
	__iii. Use the Regular Expression as Provider.
	__f. Configure the validator.
	__i. Choose Error in the Decoration Icon property.
	__ii. You want to accept input like 1M for one million, 100T for 100.000 and any number. In the Message configuration property enter Format: 1M, 4T, any number...
	__iii. In the Regular Expression configuration property enter a pattern similar to the one you already used (d*M)|(d*T)|(d*)
	__iv. Make sure the Case sensitive checkbox is selected.
	__v. Test the validator by typing in some valid and invalid values.
	__g. Save the process change to the Project Area process configuration.
	__6. To configure the attributes, open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section in the Process Configuration tab of the Project Area editor.
	__a. Select the Technology Review work item type, scroll down to the Attributes section, select the Show only custom attributes check box.
	__i. Double click at the Estimated Effort attribute to open the Custom Attribute Editor. Use the Validators selection drop down button, select the Effort Validator. Then select OK.
	__b. Double click at the Cost attribute to open the Custom Attribute Editor. Use the Validators selection drop down button, select the Cost Validator. Select OK.
	__c. Double click at the Estimated Investment attribute to open the Custom Attribute Editor. Use the Validators selection drop down button, select the Cost Validator. Select OK.
	__d. Save the process change.
	__7. Test your Attribute Customization
	__a. Create a work item of type Technology Review. You have to close and re-open the work item, if you want to use an existing one.
	__b. Enter the summary.
	__c. Go to the Tech Review Details tab.
	__i. Enter some text that does not match the valid formats
	__ii. An error shows up in front of the attributes.
	
	__iii. Press the Save button.
	__d. The save happens despite of the errors.
	__8. Configure the precondition to prevent the work item from saving in case the validation of an attribute fails.
	__a. On the Process Configuration tab of the Project Area editor open the Configuration > Team Configuration > Operation Behavior section.
	__b. In the Operation Behavior editor section, scroll down and find the Work Items > Save Work Item (server) operations for the role Everyone in the related table column.
	__i. In the column for the role Everyone click the element in the Save Work Item (server) row.
	__ii. Make sure the check box in front of “Preconditions and follow-up actions are configured for this operation” is checked and press the Add... button.
	__iii. Enter *Valida in the search field to find the Attribute Validation precondition.
	
	__iv. Select the Attribute Validation precondition and press OK.
	__v. You can specify a different name and a more descriptive error message text if you like. Other than that there are no configuration options.
	__vi. Save the process configuration change to the project area.
	__c. Go back to the work item that has the validation errors.
	__i. Do a small change for example in the Summary attribute. Press the Save button again. Now the save operation fails with an error. This happens in the clients as well as in the Web UI.
	
	__ii. Modify the values for the attributes Estimated Effort, Estimated Investment and Cost to values that match the desired formats. For example use 20d, 10T and 1M as input. Press the Save button.
	__iii. Now the work item saves without errors
	__9. Try other decoration icons such as Warning in your validator.
	__a. Open the Project Area editor switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__i. Expand the Validators node in the editor.
	__ii. Open the Effort Validator. Switch the Decoration Icon setting from Error to Warning.
	__iii. Save the changed process configuration.
	__b. Switch to your work item. If using the Web UI close the work item editor and open it again, so that the UI is able to recognize the change.
	__i. Type a wrong value into the Estimated Effort attribute. Notice the warning symbol showing up.
	__ii. Press the Save button.
	__iii. The save proceeds without an error. This is due to the Warning level.
	__c. Open the Effort Validator again. Switch the Decoration Icon setting back from Warning to Error.
	__d. Switch the Effort Validator back to Error level.
	__e. Save the process configuration.
	4.3.1 Summary
	4.4 Summary

	Lab 5 Work Item Customization With JavaScript
	5.1 Introduction to JavaScript Based Attribute Customization
	5.1.1 JavaScript Based Attribute Customization Capabilities and Limitations
	5.1.2 Challenges Developing JavaScript Based Attribute Customization
	5.1.3 Enable JavaScript

	__1. Open a browser and navigate to https://clm.process.ws/ccm/admin you need to log in with a user that has JazzAdmin repository permission. You can use user ID pewadmin password pewadmin.
	__a. Navigate to the Advanced Properties https://clm.process.ws/ccm/admin#action=com.ibm.team.repository.admin.configureAdvanced .
	__b. Search for the property “Enable Process Attachment Scripts”. Set the value to true.
	__c. Save the change that you just did
	__2. You can close the browser.
	You have now successfully enabled using JavaScript based work item customization.
	5.1.4 Optional: Install the Web, XML, and Java EE Development Tools

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__2. Open the Eclipse Help menu and select Install New software....
	__a. If you have not configured any update sites press the Add... button, otherwise use the Available Software Sites for your Eclipse client and continue in step
	__i. In the dialog name the Software Site for example Helios Sr2 (Eclipse 6.2)
	__i. Enter a valid Software Site URL for the version you are using. http://download.eclipse.org/releases/helios/201102250900 works for a vanilla RTC 4.0 zip install based on Eclipse 3.6.
	__ii. Press OK to continue.
	__b. Eclipse will read the content on the selected update site
	__c. Group the items by category and select the items to install the Web, XML, and Java EE Development category, which includes the JavaScript editor.
	__d. Press Next.
	__e. Eclipse will calculate the required dependencies and display what it is going to install. Press Next.
	__f. Accept the license and press Finish.
	__g. Restart your RTC Eclipse client when prompted.
	You are now able to create projects for JavaScript development and to create and edit JavaScript source files in your RTC Eclipse client.
	5.2 Script Based Calculated Value
	5.2.1 Total Cost Calculated Value

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__2. Create a new Eclipse project.
	__a. Use the Eclipse menu File > New > Project to create a project. If you installed the JavaScript support in 5.1.4 create a JavaScript project, otherwise create a general Project.
	__b. Name the Project ScriptBasedCustomization
	__c. Leave the defaults and press Finish to create the project.
	__i. If you create a JavaScript Project you can dismiss to open the JavaScript perspective.
	__d. Use the menu Window > Show View > Other and open the Project Explorer view to see the new project.
	__3. Go to the Team Artifacts view.
	__4. Right click at the Nifty Application Project project area in the Team Artifacts view and select Open to open the Project Area Editor for your project.
	__5. Switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. Use the Add... button to add a Calculated Value
	__b. As Name enter TotalCostScriptedCalculatedValue
	__c. Select the Type Calculated Values
	__d. Review the available Providers by selecting the drop down box.. The Exposure Provider and the Probability Cost Provider are built in providers for the Formal Project Management Template. In your context they are not applicable.
	__i. Select Script Based Calculated Value as Provider. The configuration dialog should look like below:
	__ii. Press OK to set the configuration.
	__e. Save the change to the process configuration.
	__6. Inspect the Configuration editor section to the right.
	__a. There is a Local File Path property to browse for a local script file and to reload the script file after changes.
	__b. There is an Attachment Path property describing where the file will be stored in the process configuration.
	__c. There is a Class Name property to specify the name of the class that is called in the script.
	__d. Finally there is a link to download example code.
	__7. Download the example code into your project.
	__a. Click at the Download example link in the Configuration editor.
	__b. Browse to the folder C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization
	__c. Change the file name to TotalCostScriptedCalculatedValueProvider.js
	__d. Press the Save button.
	__e. Save the process configuration.
	__8. To see the new script in Eclipse open the Project Explorer view.
	__a. Select the ScriptBasedCustomization project
	__b. Use the Refresh context menu entry or press F5.
	__c. The externally saved script file now shows up in Eclipse
	__9. Inspect the script example
	__a. Open the file in Eclipse by double clicking or using open or open with.
	__b. Either way, the example should look similar to the code below
	__c. To rename the value provider class name replace the string “com.example.ValueProvider” in both the dojo.provide and dojo.declare statements with the string “com.acme.providers.script.TotalCostScriptedCalculatedValue”
	__d. Save the change.
	__10. The example currently does nothing except passing the current value of the attribute through. To make sure you can see it working, you want to provide some debug output in the logs.
	__i. In the line before the return statement add the line console.log("- Start");
	__ii. Your script should now look as below.
	__iii. Save your change.
	__11. Switch over to the Project Area editor. The configuration should look like below:
	__a. Check the file name in the Local File Path is correct set to C:JSWorkshopsWorkspacesLab1ScriptBasedCustomizationTotalCostScriptedCalculatedValueProvider.js
	__b. Check the Class Name. It shows the old name com.example.ValueProvider. This is wrong since our change.
	__c. Press the Reload button. You might have to maximize the editor to see all buttons. Double click at the editors tab to maximize. Double click the maximized tab to minimize.
	__d. Confirm the Class Name now shows com.acme.providers.script.TotalCostScriptedCalculatedValue
	__e. Save your changes to the process configuration.
	__12. Configure the attribute to use the JavaScript Based Calculated Value.
	__a. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__b. Select the Technology Review work item type. Scroll down to the Attributes section.
	__c. In the Attributes section check the Show only custom attributes check-box to narrow down your search.
	__i. Locate and select the custom attribute Total Cost. Press the Edit button.
	__ii. Use the drop down button Calculated Value to select the TotalCostScriptedProvider.
	__iii. Add dependencies to the attributes Cost, Estimated Effort and Estimated Investment. Every time one of these attributes change, the new calculated value provider needs to get called to do the calculation based on the new data.
	Your Custom Attribute Configuration should now look like below.
	__d. Click OK and save the changes to the process configuration.
	__13. Now that the prototype Calculated Value provider is configured, you can test if it runs. Log files provided by the products will help with testing.
	__a. Test if the script works in Eclipse using the log file:
	__i. Use the Eclipse client to create a new work item of type Technology Review.
	__ii. Open an explorer window, locate the Eclipse log file C:JSWorkshopsWorkspacesLab1.metadata.log and open it with a text editor
	__iii. Scroll to the end of the log file. It should show a log entry of the script engine and the log message like below.
	__b. (Optional) Inspect the Error Log view. You can also integrate the log view in your eclipse client for this debugging exercise by opening the Error Log view: Window > Show View > Other > Error Log. You should be able to see something like this:
	__c. Test the script works in the Web UI.
	__i. Use the Web UI https://clm.process.ws/ccm/web to create a new work item of type Technology Review.
	__ii. Open the log file C:JSWorkshopsIBMJazzTeamServerservertomcatworkCatalinalocalhostccmeclipseworkspace.metadata.log
	__iii. Scroll to the end of the log file. It should show a log entry of the script engine and the log message like below.
	__d. If the log does not show this information, the script did not run and something is wrong. See the Troubleshooting Box above.
	__i. Check if scripting is enabled.
	__ii. Close the work items and create a new work item of type Technology Review.
	__iii. Reload the script after fixing and save the process configuration.
	__14. Currently the script does not do anything, you want to add some useful code.
	__a. First it is necessary to read the attributes. Then the calculation needs to be performed.
	__b. To be able to read attribute values the script needs access to some API.
	__i. Add the dojo.require statement below dojo.require("com.ibm.team.workitem.api.common.WorkItemAttributes");
	__c. Now it is possible to access the workitems attributes through the referenced JavaScript API. Access to attributes is provided by workitem.getValue(AttributeIDString). It is necessary to pass the Attribute ID for the work item. The API provides access to the built in attributes providing access to the ID's from WorkItemAttributes class.

	__d. Add the following code to read the attributes and print the value using the attribute ID's

var estimatedInvest = workItem.getValue(
 "com.acme.openup.workitem.attribute.estinvest");
console.log("Estimated Invest: " + estimatedInvest);

var estimatedEffort =workItem.getValue(
 "com.acme.openup.workitem.attribute.esteffort");
console.log("Estimated Effort: " + estimatedEffort);

var averageCost	= workItem.getValue (
 "com.acme.openup.workitem.attribute.cost");
console.log("AverageCost: " + averageCost);	
	__e. Now modify the return statement to calculate the total cost to: var totalCost = new String(parseInt(estimatedEffort)*parseInt(averageCost)+parseInt(estimatedInvest)); if(parseInt(totalCost)>0){ console.log("- Total cost: " + totalCost); return totalCost; } console.log("- return no cost"); return ""; These statements calculate the total cost and return either a number or a blank value. The blank value is necessary for the next lab.
	__f. The complete function should now look like below
	__15. Save the changes to the script.
	__a. Go back to the Attribute Customization editor. If you have closed it or navigated away from it, open the Project Area editor, switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section. Locate the customization type Calculated Value, expand its node and click at the customization.
	__i. In the Configuration editor section press Reload to upload the changes.
	__ii. Save the Process Configuration change.
	__b. Try out your script.
	__i. Create a new work item of type Technology Review. Switch to the Tech Review Details tab it should now look like below:
	__ii. Open the log C:JSWorkshopsWorkspacesLab1.metadata.log and scroll way down to the bottom. You should see something similar to
	__c. Enter some plain values such as 11, 100, 3000. Once values are provided, the total cost is calculated from the values.
	
	__d. The first version of your script is now working!
	__16. There are several issues with the first attempt. It is not able to handle input such as 10d for 10 days or 10T for 10 thousand. You would like to do debugging, but you want to be able to switch debugging off.
	__17. Lets address the debug issue first.
	__a. After the function declaration, define a new variable doDebug to switch debug on and off and set it to true. var doDebug = true;
	__b. After that define a new variable for scriptname like the line below. var scriptname = "TotalCostScriptedCalculatedValue";
	__c. Your script should now look like below
	__d. Define a new function called debug() that takes a variable and logs if doDebug is true.
	__i. Define the function after the return””; statement in the body of the function you are developing. The code looks like function debug(display){ if(doDebug){ console.log(scriptname + " " + display); } }
	__e. Replace the console.log calls by calls to the new function debug(). Your implementation should now look like below.
	__i. Save your changes to the script.
	__f. Go back to the Attribute Customization editor.
	__i. Press Reload to upload the changes.
	__ii. Save the change to the Process Configuration.
	__g. Test your script.
	__i. Create a new work item of type Technology Review.
	__ii. Test if the script is still working.
	__iii. Check the log file for the output.
	__h. You can now turn the logging on and off by setting doDebug to true or false. This is very useful if you have more than one script. You can individually switch the scripts debug output on and off and avoid too much clutter.
	__i. In addition the script name is printed in front of each debug statement which allows highlighting the block of outputs related to one script easier when using advanced text editors. See the example below:
	__18. What is left is to convert the values with modifiers such as m, d, M, T, calculate the real value and use the result in the calculation.
	__a. Add the following lines in front of the var totalCost = … statement: estimatedInvest=convertValue(estimatedInvest); estimatedEffort=convertValue(estimatedEffort); averageCost=convertValue(averageCost);
	__b. Add a new function after the debug() function to do the conversion. The code looks like: function convertValue (value){ debug("convertValue"); var calc = handleUndefined(value); var slen=calc.length; var modifier = calc.substring(slen-1, slen); var factor = getFactor(modifier); if(factor!=""){ numbervalue=calc.substring(0,slen-1); calc = numbervalue*factor; } return calc; } The code calls handleUndefined() to convert empty input into a string containing “0”. With the now valid assumption that the string is at least of length one, the code gets the last digit as modifier. The modifier is used in getFactor() to calculate the multiplier. If a factor can be calculated, that digit is removed from the input and the true value is calculated. If there is no factor the number is passed through.
	__c. The missing function to handle undefined values needs to be implemented. Insert it after the convertValue() function. Add the code below. function handleUndefined (value){ if(value==null){ value="0"; } if(value==""){ value="0"; } return value; }
	__d. The last step that is missing is to implement getting the factor.
	__i. Add a new function getFactor() after the last function, then save the JavaScript file. The code would look like below: function getFactor(modifier){ // m, w, d, h for month, weeks, days... // M, T for millions and thousands debug("getFactor"); var factor = ""; switch (modifier) { case 'w': factor = "40"; break; case 'm': factor = "240"; break; case 'd': factor = "8"; break; case 'h': factor = "1"; break; case 'T': factor = "1000"; break; case 'M': factor = "1000000"; break; default: factor = ""; break; } debug("getFactor:" + factor); return factor; }
	__19. Test the completed script.
	__a. Go back to the Attribute Customization editor.
	__i. Press Reload to upload the changes.
	__ii. Save the Process configuration change.
	__b. Try out your script.
	__i. Create a new work item of type Technology Review.
	__ii. Enter values for example 2d, 1T, 1M and check if the calculation is performed correctly.
	__c. If your script has errors, inspect the log output and fix them.
	__20. If you fix errors, save and reload the script and save the Process Configuration every time before you test the changes. Make sure to create a new work item or at least to close and reopen the editor for an existing work item to make sure the change to the script and the Process Configuration gets picked up by the editor.
	5.2.2 “AttributeValueAnalyzer” Calculated Value Provider

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__a. Open the Project Explorer.
	__b. Create a Copy of the TotalCostScriptedCalculatedValueProvider.js and save it as AttributeValueAnalyzerCalculatedValueProvider.js.
	__c. Open the new script AttributeValueAnalyzerCalculatedValueProvider.js in a new editor.
	__d. Remove the functions you added to the TotalCostScriptedCalculatedValueProvider getFactor(), handleUndefined(), and convertValue()), except for the debug() function.
	__e. Delete the code between the line debug(" - Start"); and the final return statement.
	__f. Rename all occurrences of the text TotalCostScriptedCalculatedValue to AttributeValueAnalyzer. You should have 3 replacements:
	__i. The dojo.provide() statement at the beginning should now show: dojo.provide("com.acme.providers.script.AttributeValueAnalyzer");
	__ii. The dojo.declare() statement should now show: dojo.declare("com.acme.providers.script.AttributeValueAnalyzer");
	__iii. The scriptname statement should now show var scriptname = "AttributeValueAnalyzer";
	__g. In the line after the var scriptname = statement add this new declaration that gives you access to the built in Attributes: var WorkItemAttributes = com.ibm.team.workitem.api.common.WorkItemAttributes; This defines a variable that allows easy access to the API defined in the corresponding dojo.require() statement as the second line of the script.
	__h. Below the first debug statement in the function declare a new attribute var out = "Attribute Values:n"; The new variable out will contain all the data to be returned later.
	__i. Change the return statement to return the value of out The line should look like: return out;
	__j. The Script should now look like below:
	__2. Now add a new function that handles analyzing the general information from the work item attribute.
	__a. Add the code below after the debug function code function getAttributeData (message,attributeID){ debug("Get Attribute Data for " + attributeID); var attributeValue=""; var attributeLabel=""; var result = message + "n"; try{ isSet=workItem.isAttributeSet(attributeID); attributeValue=workItem.getValue(attributeID); } catch (e) { attributeValue = "Exception reading the attribute value"; } try{ attributeLabel=workItem.getLabel(attributeID); } catch (e) { attributeLabel= "Exception reading the attribute label"; } result += "Set: " + isSet + "nValue= " + attributeValue + "nLabel= " + attributeLabel; debug(result); return result + "nn"; }
	__b. The code tries to access an attribute given an attribute ID. It tries to read the attribute value and the attribute label. The data is sent to the debug console and returned as a readable string.
	__3. To use the code, add statements like the following in front of the return statement of the main function: out+=getAttributeData(<someText>, <WorkItemAttributes.ID>); The lines below show some examples. You can copy all lines from below into your script, Add at least the lines for the ID, the summary, the priority, the owner and the creation date. out+=getAttributeData("ID: ", WorkItemAttributes.ID); out+=getAttributeData("TYPE: ", WorkItemAttributes.TYPE); out+=getAttributeData("Summary: ", WorkItemAttributes.SUMMARY); out+=getAttributeData("Creator: ", WorkItemAttributes.CREATOR); out+=getAttributeData("Owner: ", WorkItemAttributes.OWNER); out+=getAttributeData("Project Area: ", WorkItemAttributes.PROJECT_AREA); out+=getAttributeData("State: ", WorkItemAttributes.STATE); out+=getAttributeData("Resolution: ", WorkItemAttributes.RESOLUTION); out+=getAttributeData("Found in: ", WorkItemAttributes.FOUND_IN); out+=getAttributeData("Severity: ", WorkItemAttributes.SEVERITY); out+=getAttributeData("Priority: ", WorkItemAttributes.PRIORITY); out+=getAttributeData("Creation Date: ", WorkItemAttributes.CREATION_DATE); out+=getAttributeData("Due Date: ", WorkItemAttributes.DUE_DATE); out+=getAttributeData("Estimate: ", WorkItemAttributes.ESTIMATE); out+=getAttributeData("Corrected Estimate: ", WorkItemAttributes.CORRECTED_ESTIMATE); out+=getAttributeData("Time Spent: ", WorkItemAttributes.TIME_SPENT); out+=getAttributeData("Filed Against: ", WorkItemAttributes.FILED_AGAINST); out+=getAttributeData("Planned For: ", WorkItemAttributes.PLANNED_FOR); out+=getAttributeData("Resolution Date: ", WorkItemAttributes.RESOLUTION_DATE); out+=getAttributeData("Tags: ", WorkItemAttributes.TAGS); out+=getAttributeData("Modified Date: ", WorkItemAttributes.MODIFIED); out+=getAttributeData("Modified By: ", WorkItemAttributes.MODIFIED_BY);
	__a. Check the script for any errors and save the script.
	__4. You now need to configure the script. Open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. In the Attribute Customization editor, select Calculated Values. Use the Add... button at the bottom of the editor to add a new Calculated Value.
	__i. Name the configuration AttributeValueAnalyzer.
	__ii. Make sure the Configuration Type is Calculated Values.
	__iii. Select Script Based Calculated Value as Provider
	__iv. Use the OK button to create the customization.
	__b. Now upload the script.
	__i. Use the browse button and browse for the script in the C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization
	__ii. Select the file AttributeValueAnalyzerCalculatedValueProvider.js.
	__c. Save the change to the Process Configuration.
	__5. Configure the calculated value provider
	__a. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__i. Select any work item type and edit the Description attribute.
	__ii. Select the AttributeValueAnalyzer for the calculated value provider.
	__iii. Add dependencies to the attributes you are interested in triggering the provider. You can basically select all attributes except the Modified Date. Only charges to the selected attributes will trigger an update. If you added only selected lines above, add dependencies to the attributes you monitor. At least add ID, the summary, the priority, the owner and the creation date.
	__b. Click OK and save the changes to the process configuration.
	__6. Now you can test the script.
	__a. Create a new work item.
	__i. Look at the Description Attribute in the work item editor. The work item Description attribute should now show the calculated text with the information about the attribute values like in the screen shot below.
	__ii. Save the work item. After saving, the type and the state of the work item are set as well as creation and modification time. The ScriptBased calculated value is triggered by the changes and the Description attribute should show more data.
	__iii. Scroll down and look at the data. Especially look at information such Enumerations like priority, Creator, Owner, Filed Against and other item type attributes. You can see the Enumeration literals as well as the enumeration labels. Item type attributes show an ID String for the item and the label displays user and other element names.
	__a. Look at the Modified Date output: It is somewhat unreadable. To show the data correctly some conversion is necessary.
	__7. Extend your script to show human readable dates that could also used for calculation.
	__a. At the beginning of the script underneath the first dojo.require() statement add the following new dojo.require() statements. dojo.require("dojo.date"); dojo.require("dojo.date.stamp"); This API can be used to access and convert the timestamp type attributes.
	__b. Modify the code and add the boldface lines below each date attribute you have in your script. If you have not added the dates to begin with, add all the code from below.
	__i. The Creation Date: out+=getAttributeData("Creation Date: ", WorkItemAttributes.CREATION_DATE); var creationDate= dojo.date.stamp.fromISOString(workItem.getValue(WorkItemAttributes.CREATION_DATE)); out+= "Creation Date " + creationDate + "nn";
	__ii. The Due Date: out+=getAttributeData("Due Date: ", WorkItemAttributes.DUE_DATE); var dueDate= dojo.date.stamp.fromISOString(workItem.getValue(WorkItemAttributes.DUE_DATE)); out+= "Due Date " + dueDate + "nn";
	__iii. The Modified Date out+=getAttributeData("Modified Date: ", WorkItemAttributes.MODIFIED); var modifiedDate= dojo.date.stamp.fromISOString(workItem.getValue(WorkItemAttributes.MODIFIED)); out+= "Modified Date " + modifiedDate + "nn"; This code allows to show the date in a human readable format.
	__c. Save the script.
	__8. Reload the script.
	__a. Navigate to the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__b. Open the calculated values node on the attribute customization editor and click on the AttributeValueAnalyzer calculated value provider.
	__c. On the Configuration editor press the Reload button.
	__d. Save the Process Configuration changes.
	__9. Test the changes to the script.
	__a. Create a work item. Enter the summary and the category then save the work item.
	__b. Validate that the date attributes now return a readable date.
	__10. Finally add a section to show some of your custom attributes.
	__a. You can use the function getAttributeData() with the custom attributes by providing the custom attribute ID's. Place the cursor behind the line

out+=getAttributeData("Modified By: ", WorkItemAttributes.MODIFIED_BY);
	__b. Add the following lines out+="nCustom:n"; out+=getAttributeData("Estimated Invest: ", "com.acme.openup.workitem.attribute.estinvest"); out+=getAttributeData("Estimated Effort: ", "com.acme.openup.workitem.attribute.esteffort"); out+=getAttributeData("Average Cost: ", "com.acme.openup.workitem.attribute.cost"); out+=getAttributeData("Total Cost: ", "com.acme.openup.workitem.attribute.totalcost");
	__c. Save the script.
	__11. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__a. Select the work item type Technology Review and edit the Description attribute. If you select another work item type, you won't see the attributes you want to add as dependencies.
	__b. Add dependencies to the custom attributes Cost, Estimated Effort, Estimated Investment and Total Cost to trigger the calculation on changes.
	__c. Follow the steps from step 8 on page 151 to reload the script and save the process configuration.
	__12. Test the changes
	__a. Create a new work item of type Technology Review and verify the Tech Review Details tab shows up.
	__b. Change the values of the custom attributes Cost, Estimated Effort, Estimated Investment on the Tech Review Details tab and make sure they are presented in the description of the work item.
	__13. Remove the calculated value for the description attribute.
	__a. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__b. Select any work item type and edit the Description attribute.
	__c. Select None for the calculated value provider.
	__d. Remove the dependencies you added to the description attribute.
	__e. Click OK and save the changes to the process configuration.
	5.2.3 Summary
	5.3 Script Based Conditions

	__1. Open the Eclipse client if it is not already opened and connect to your repository. Use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__2. The first step is to create a condition to calculate if an attribute is required. You will now implement this condition.
	__a. Open the project area editor for Nifty Application Project project area, switch to the Process Configuration tab and navigate to Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__b. In the Attribute Customization editor, select Conditions. Use the Add... button at the bottom of the editor or use a right click to add a new Condition.
	__c. Name the condition TotalCostRequiredAttributeCondition make sure the type shows Conditions and select the only option Script Based Condition for the provider. Then click OK to create it.
	__d. To download the example code, click at the Download example link in the Configuration editor.
	__i. Browse to the folder C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization
	__ii. Change the file name to TotalCostRequiredAttributeCondition.js
	__iii. Press the Save button.
	__e. Save the process configuration.
	__3. To see the new script in Eclipse open the Project Explorer view.
	__a. Select the ScriptBasedCustomization project
	__b. Use the Refresh context menu entry or press F5.
	__c. The externally saved script file now shows up in Eclipse
	__d. Open the file for editing and review it.
	__i. The file should look like in the image below
	__4. Start implementing your own code.
	__a. To provide a useful name change the ID "com.example.Condition" in the dojo.provide and dojo.declare statement to "com.acme.providers.script.TotalCostRequiredAttributeCondition"
	__b. Prepare for debugging similar to the other scripts.
	__i. Add the following statements after the first function() statement. var doDebug = true; var scriptname = "TotalCostRequiredAttributeCondition";
	__ii. Copy the function debug() from the calculated value provider script TotalCostScriptedCalculatedValue.js and insert it after the last return statement. You are now able to debug your work.
	__iii. Add this line before the return statement. It will tell you if the condition ran: debug("- Start");
	__5. The basic preparation work is now finished. Now the script needs to be implemented to match the requirement.
	__6. At first it is interesting to know the state of the work item. See the Attribute customization Wiki entry for more information.
	__a. Underneath the dojo.provide statement, add a line dojo.require("com.ibm.team.workitem.api.common.WorkItemAttributes"); As mentioned, this line is required to have access to the WorkItemsAttributes object that provides with the constants that will ease the access to the built in attributes.
	__b. Add the work item object behind the function declaration using the lines below. var WorkItemAttributes= com.ibm.team.workitem.api.common.WorkItemAttributes; The following image shows the added code.
	__7. Check the interesting attributes of the work item to determine if the condition has to check for the other values. The first attribute to check is the state of the work item.
	__a. Find the state ID's of the work item, in order to check when the condition has to check for the other values. There are basically two options to find them.
	__i. Option 1: You can look up the workflow name of the workflow used by the work items you are interested in.
	__ii. Option 2 is just to use a script to get the value, either using the AttributeValueAnalyzerCalculatedValueProvider.js or to debug the script you develop and use the debug output to find out the state ID's.
	__b. You have used the second option already so this time you look up the information in the Process Configuration.
	__i. The information can be found in the in the Eclipse client in Process Configuration > Project Configuration > Configuration Data > Work Items > Workflows.
	__ii. Browse the workflows and find the one you are interested in. In this case the Workflow is named “Technology Review Workflow”. Copy the name of the workflow.
	__c. To find the state ID's, open the Process Configuration Source tab and use CTRL+F to open the Eclipse Find window. Paste or type the workflow name “Technology Review Workflow” into the Find field of the Find and Replace dialog and press the Find button.
	__i. Find the State entries and look for the state name “Experimental” and look up the id property.
	__d. The Experimental state has the ID "tecReviewWorkflow.state.s3"
	__e. The script you are writing is supposed to be valid for the Experimental state. Go back to the TotalCostRequiredAttributeCondition script code, and add the lines below in your script in before the final return statement. // Access to the built in work item attribute ID's
var state = workItem.getValue(WorkItemAttributes.STATE);
debug("state: " + state);
if(state!="tecReviewWorkflow.state.s3"){
	return false; // Nothing to do
}

The code checks if the state is valid. If not, the script returns false, because in our case there is noting more to do. The format of the condition has been deliberately chosen. It allows you to easily add more states using ||state=”<stateID>”
	__f. Save your script.
	__8. Now you want to check if the impact of the Technology Review is High.
	__a. The first information you need is the attribute ID of the Impact attribute. To gather this information, in the Eclipse client open the project area editor and in the Process Configuration tab navigate to Project Configuration > Configuration Data > Types and Attributes.
	__i. In the Work Item Type section, select the work item type Technology Review and scroll to the Attributes section below. Browse for the attribute Impact and use the Edit button to open the editor for the attribute.
	__ii. The Attribute Editor shows the attribute ID. Copy the work item ID to be used later. The value should be com.ibm.team.workitem.workItemType.risk.impact.
	__b. To be able to compare the data in the attribute with the possible values it can have, there are two choices: use the enumeration literals or use the label of the enumeration values. You will use the labels in this example.
	__c. Identify the label for the Impact enumeration. The one we're interested in is High.
	__i. Add the following lines to your script before the final return statement. The code uses the attribute ID you just looked up to get the label of the impact attribute. // Check for the impact var impact = workItem.getLabel("com.ibm.team.workitem.workItemType.risk.impact"); debug("impact: " + impact); if(!(impact=="High")){ return false; } The code here simply checks if the impact is high and just exits the condition with false if not. This means the condition will not be valid. The same pattern is used to determine if the condition can exit with false is used in all the code here.
	__9. At last you want to check the value of the Complexity attribute. You will use the label again. for other approaches, use the same strategy as described in step 7 on page 157 above to find the required data.
	__a. The attribute ID is com.acme.openup.workitem.attribute.complexity.
	__b. The enumeration labels values to look for are Low and Manageable.
	__c. Add the following lines to your script before the final return statement. // Check for the complexity var complexity = workItem.getLabel("com.acme.openup.workitem.attribute.complexity"); debug("complexity: " + complexity); if(!(complexity=="Low"||complexity=="Manageable")){ return false; } The statements check if the work item has a complexity set to qualify it to require the Total Cost estimation. If not, the script returns false.
	__10. At this point in the script the work item is qualified and needs the total cost attribute
	__a. To make the script a little bit prettier, add a comment and a debug statement in front of the final return statement. Check and make sure the final return statement returns true like below. // Total cost attribute is required to have a value. debug("Total Cost Attribute Required"); return true;
	__11. Save the script
	__12. The script is now ready for testing and all that is left is to upload and test it.
	__a. To upload the script open the Process Configuration tab in the project area editor and go to Project Configuration > Configuration Data > Work Items > Attribute Customization
	__b. Expand the list of conditions and select the condition TotalCostRequiredAttributeCondition you created for the lab
	__i. In the Configuration editor select the browse button to browse for the script file.
	__ii. Browse to the folder C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization , select the file TotalCostRequiredAttributeCondition.js and press Open.
	__iii. Verify that the Attachment Path changed to /workitem/scripts/common/TotalCostRequiredAttributeCondition.js and the Class Name changed to com.acme.providers.script.TotalCostRequiredAttributeCondition
	__iv. Save the changes in the Attribute Customization wizard.
	__13. Now the script should be ready for testing. You need to configure the operational behavior before you can test if it works.
	__a. In the Process Configuration tab of the project area editor, browse to Configuration > Team Configuration > Operation Behavior.
	__i. Search for the Save Work Item (server) operation for the role Everyone in the related table column. It should be at the end of the operations list. Click at the operation.
	__ii. In the editor below click the Add button to add a precondition and browse the available choices.
	__iii. Find the Required Attributes For Condition precondition which is an option that could be used in this case.
	__iv. Click OK to add the precondition.
	__v. With the just added precondition highlighted, a configuration section for it appears in the right side of the editor window Select the Add button in the right editor window.
	__a. Select the TotalCostRequiredAttributeCondition as Condition in the Required Attributes editor.
	__b. Browse the attributes and select the TotalCost attribute to be required based on the condition.
	__c. Click OK
	__vi. Your editor should look like below.
	__b. Save the changes to the process configuration.
	__14. Now the condition can be tested.
	__a. It is important to monitor the test in the log files. See 13 at page 133 for more details about the logging capability.
	__b. Use the Eclipse client to create a new work item of type Technology Review.
	__c. Script logging:
	__i. Open an explorer window, locate the Eclipse log file C:JSWorkshopsWorkspacesLab1.metadata.log and open it with a text editor (editors like Notepad++ work best).
	__ii. Scroll to the end of the log file. It should show a log entry of the script engine and the log message like below.
	At this point, the new work item has no state.
	__d. In the work item provide a Summary such as “Testing TotalCost condition” and save the work item.
	__e. Use the “Research” action to change the state of the work item to “Under Research” and save the change.
	__f. Use the “Test” action to change the state of the work item to “Experimental” and save the change.
	__g. Change to the Tech Review Details tab.
	__h. Change the Complexity to Manageable or Low.
	__i. Change the Impact to High.
	__j. You should see a red asterisk popping up near the Total Cost attribute presentation.
	__k. Reload the log file. You should now see an output similar to below.
	__l. If not, review the script and fix any issues. The final script is presented below
	__15. Test another scenario.
	__a. Create a work item of type defect.
	__b. Modify the work item a little bit and reload the log file.
	__c. You should see – nothing. The precondition triggers the script only for work items that have the configured attribute in the precondition (Total Cost), and the defect does not have it.
	__16. As reference, the final script code should look as follows.
	5.4 Script based Validations

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__2. Open the project area editor for the Nifty Applicaiton Project project are and switch to the Process Configuration tab.
	__3. The script based validators work the same way the non-script based validators work. This means that the validation can only prevent saving a work items if the Attribute Validation operational behavior precondition is activated, and the validation returns an error. So you need to check for the precondition.
	__a. In the Process Configuration tab, browse to Configuration > Team Configuration > Operation Behavior.
	__b. Search for the Save Work Item (server) operation for the role Everyone in the related table column. It should be at the end of the operations list. Click on the operation.
	__c. Try to find the Attribute Validation precondition in the list of preconditions displayed. If the precondition is not configured, use the Add... button to add it. Browse for it in the list, select it and select OK. The Precondition should now show up in the list of active preconditions.
	__4. You will now implement a script based validation that work with the precondition.
	__a. Open the Configuration>Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__b. In the Attribute Customization editor, select Validators. Use the Add... button at the bottom of the editor or use a right click to add a new Validator.
	__c. Name the new validator RegExpValidator, make sure the type shows Validators and select the option Script Based Validation for the provider.
	__d. To download the example code, click at the Download example link in the Configuration editor.
	__i. Browse to the folder C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization
	__ii. Change the file name to RegExpScriptedValidator.js
	__iii. Press the Save button.
	__iv. Save the process configuration.
	__5. To see the new script in Eclipse open the Project Explorer view.
	__a. Select the ScriptBasedCustomization project
	__b. Use the Refresh context menu entry or press F5.
	__c. The externally saved script file now shows up in Eclipse
	__d. Open the file for editing.
	__6. You will now create the code for the script based validation.
	__a. The initial code looks like below. Review the code. The boxes and the arrows show where you will change the code in the next steps. Please review the variable declarations for the variables Status and Severity, and the corresponding dojo.require() statements. This code allows you to create a status with a defined severity.
	__b. Locate the strings "com.example.Validator" and replace it with "com.acme.providers.script.RegExpScriptedValidation" to rename your validator.
	__c. Prepare the code for better debugging as before. In the line after the (function() declaration add the lines (marked by the first arrow): var doDebug= true; var scriptname = "RegExpScriptedValidation";
	__d. Open one of the scripts you created before and copy the debug function over. Insert the code below right after the statement return Status.OK_STATUS (marked by the second arrow). function debug(display){ if(doDebug){ console.log(scriptname + " " + display); } }
	__e. Add a statement to debug directly underneath the validate: function(... statement. debug("– start");
	__7. Now the script is prepared to allow developing the required capabilities. This time you want to keep the script as configurable as possible.
	__a. Review the parameters that the function call retrieves. validate: function(attribute, workItem, configuration) {
	__i. The parameter attribute provides you with the ID of the attribute the provider is configured for.
	__ii. The parameter workItem provides access to the work item attribute values.
	__iii. The parameter configuration provides access to additional information that can be stored in the process configuration source.
	__b. The JavaScript regular expression class RegExp that you will use requires one parameter with the regular expression string and has an optional parameter for modifiers (such as ignore case). You want the regular expression and the modifier to be parameters that are passed to the validation from outside. Add the following lines to your script right after the line with the debug statement you just added. var pattern=configuration.getChild("parameters").getStringDefault("pattern", ""); var modifier=configuration.getChild("parameters").getStringDefault("modifier", ""); var verifyPattern=new RegExp(pattern,modifier); debug("RegExp: "+pattern+" [" +modifier+"]"); The code above retrieves information from XML code of the following form that can be added to the process configuration source: <parameters pattern="<PatternString>" modifier="<ModifierString>" … />
	__i. The first line tries to get a <parameters> element inside the configuration information for the validator and tries to read the pattern attribute if available or uses the default empty string. The default is passed as the second parameter to the getStringDefault method.
	__ii. The second line tries the same with an attribute named modifier.
	__iii. The last line prints the result for debugging into the log files.
	__c. Now it is necessary to retrieve the value of the attribute and test that against the regular expression. Add the following lines to your script, after the debug statement of the last addition. var valuetoTest=workItem.getValue(attribute); var verifyPattern=new RegExp(pattern,modifier); var result=verifyPattern.exec(valuetoTest); debug("Test Result: " + result);
	__i. The first line reads the attribute the validator is configured for. The ID of the attribute is passed in the parameter attribute.
	__ii. In the next line you create a new regular expression object with the pattern and modifier retrieved from the configuration.
	__iii. The third line is used to execute the regular expression. The regular expression execution returns an array with the first value containing the pattern match.
	__iv. The debug statement just logs the returned values.
	__d. Now it is possible to test if the value of the attribute matches the pattern. Add the following lines to your script after the last debug statement. if(result[0]!=valuetoTest){ debug("Validation Fail"); //Get the configuration parameters about the severity and error message var severity= configuration.getChild("parameters").getStringDefault("severity", Severity.ERROR.name); var message= configuration.getChild("parameters").getStringDefault("message", "Regular Expression failed!"); debug("Validation: "+severity+" [" +message+"]"); return new Status(Severity[severity], message); }
	__i. The code tests if the returned result in the array at position 0 equals the whole of the work items attribute we test. The other results in the array contain partial matches of the regular expression. Only if the value of result[0] equals the tested attribute value content used as input value the whole input conforms the expression. If it is the case there was a match. If not, the validation fails, which is handled in the if statement.
	__a. First the code logs the failure.
	__b. Then the desired severity is retrieved from the configuration object. As default the severity is set to error.
	__c. Next the message string is retrieved from the configuration A simple default message is used in case there is no configuration.
	__d. The retrieved information about severity and message is logged.
	__e. Finally a new status object based on severity and message is created and returned.
	__e. Now add a last line to log the succeeded validation after the closing bracket for the if statement: debug("Validation Success");
	__f. Save the changes to your script.
	__g. Reload the modified script.
	__i. Return to the project area editor, the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__ii. In the Attribute Customization editor, browse for the RegExpValidator.
	__iii. Highlight the RegExpValidator and click Reload. Make sure the Class Name and path now show names containing RegExpScriptedValidator.
	__iv. Save the process configuration change.
	__h. Modify the validator for the attribute TotalCost.
	__i. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__ii. Select the Technology Review work item type.
	__iii. Edit the Total Cost custom attribute. In the Validators section select the RegExpScriptedValidator from the drop down box and press OK.
	__iv. Save the process configuration change.
	__i. Now the validator needs to be configured with the pattern, modifier, severity and error message.
	__i. Switch the project area editor to the Process Configuration Source tab.
	__ii. Use CTRL+F and enter com.acme.providers.script.RegExpScriptedValidation as your search term.
	__a. The entry you find should contain the data. Please note the XML below has been wrapped to fit the document.
	__b. Enter the following line with parameters right before the end of the validator section marked with </validator>. <parameters pattern="(d*M)|(d*T)|(d*)" modifier="" message="Invalid format. Use Format: 1M, 4T, or any number..." severity="ERROR"/>
	__c. Review the data you just entered. It is exactly the same information provided in the regular expression validator in the last lab. It contains the regular expression, an empty modifier, the standard message and severity Error. Your code should look like below.
	__d. Save the process configuration change.
	__j. Create a new work item of type Technology Review. Switch to the Tech Review Details tab. Enter data into the Total Cost attribute.
	__i. Enter “Foo”. An error marker should show up and provides the error message you configured as hover.
	__ii. Enter a number or a number followed by 'M' or 'T' and verify the error indicator disappears.
	5.5 Script based Value Set

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__2. Open the project area editor for the Nifty Application Project project are and switch to the Process Configuration tab. Open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. In the Attribute Customization editor, select Value Sets. Use the Add... button at the bottom of the editor or use a right click to add a new Value Set.
	__b. As Name enter Department Scripted Value Set.
	__c. As Type select Value Sets.
	__d. As Provider select Script Based Value Set.
	__e. Your Configuration should look as below. Click OK to create the configuration.
	__3. To download the example code, click at the Download example link in the Configuration editor.
	__i. Browse to the folder C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization
	__ii. Change the file name to ScriptBasedDepartmentValueSet.js
	__iii. Press the Save button.
	__iv. Save the process configuration.
	__4. To see the new script in Eclipse open the Project Explorer view.
	__a. Select the ScriptBasedCustomization project
	__b. Use the Refresh context menu entry or press F5.
	__c. The externally saved script file now shows up in Eclipse
	__d. Open the file for editing.
	__e. The example looks like below:
	__f. The script pushes values into an array and returns the array
	__5. Rename the class and prepare the script for better debugging like before. Debugging is not really needed, the example is not complex, but that might change in the future.
	__a. Locate the string "com.example.ValueSetProvider" and replace it with "com.acme.providers.script.ScriptBasedDepartmentValueSet" to rename the value set.
	__b. In the line after the (function() declaration add the lines: var doDebug= true; var scriptname = "ScriptBasedDepartmentValueSet";
	__c. Open one of the scripts you created before and copy the debug function over. Insert the code immediately after the statement “return result;”. function debug(display){ if(doDebug){ console.log(scriptname + " " + display); } }
	__d. Add a debug(“- Start”); statement at the beginning of the function as before.
	__e. Add a debug(“- return results”); statement before the return statement.
	__f. Now the script is prepared to allow developing the required capabilities. This time you want to keep the script as configurable as possible.
	__6. Add some department values to the script
	__a. Change the strings in the existing result.push() statements to “Development” and “Sales”.
	__b. Add new result.push() statements with the strings "Accounting", "IT", "Production".
	__c. The resulting code should look like below
	__d. Save the changes to the script.
	__7. Reload the script.
	__a. Go back to the Attribute Customization editor. If you have closed it or navigated away from it, open the Project Area editor, switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section. Locate the customization type Value Set, expand its node and click at the customization.
	__b. In the Configuration editor section press Reload to upload the changes.
	__c. Your configuration should look as follows. Please note, keep the Filtered check box in the Value Set Provider Script Settings unchecked.
	
	__d. Save the Process configuration change.
	__8. Configure the Attribute for the new Attribute Customization
	__a. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__b. Select the Technology Review work item type. Scroll down to the Attributes section.
	__c. In the Attributes section check the Show only custom attributes check-box to narrow down your search.
	__d. Locate and select the custom attribute Affected Departments. Press the Edit button.
	__e. Use the drop down button Value Set to select the Department Scripted Value Set.
	__f. Click OK and save the changes to the process configuration.
	__9. Test your new Value Set.
	__a. Create a new work item of Type Technology Review.
	__b. Open the Tech Review Details Tab.
	__c. Press the Add... button on the Affected Departments attribute.
	__d. You see a value selection dialog like below.
	__e. Select the values Development and IT and click OK.
	__f. The selected values are added to the Affected Departments list.
	__g. Press the Add... button again.
	__h. In the selection dialog select the Filter field and type something for example 'A'.
	__i. The filter does not work. To have the filter working follow the info box below.
	__ii. The example script ScriptBasedDepartmentValueSetFiltered.js which is part of the script sources that you can download from the lab material provides you with an example. It creates a regular expression pattern that tests for a matching prefix and can be used as type ahead filter.
	__10. If you have issues with the script, you can debug it.
	__a. To debug your script open the script log of the server at C:JSWorkshopsIBMJazzTeamServerservertomcatworkCatalinalocalhostccmeclipseworkspace.metadata.log
	5.6 Calculated Value to Visualize the State of the Technology Review

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1. Log in with the user jim password jim.
	__2. Review the Technology Review work item.
	__a. Create a work item of the type Technology Review.
	__b. Switch over to the Tech Review Details tab.
	__i. The tab contains a blank section named Workflow Information that you probably already noticed.
	__ii. The Workflow Information section is a read only Wiki type attribute that can be used to display information such as links.
	__iii. The Wiki also displays certain resources provided by a REST service automatically. You will use this mechanism to display the workflow of the work item.
	__3. Download the supporting files
	__a. Browse to the download location of this workshop. In the Lab Material section, locate the link Lab 5.6 Workflow Image Default Value. Download the referenced file and store the file on your local drive and remember the location. The file on disk will be named YYYYMMDD_ScriptBasedCustomization_Lab5_WorkFlowImage_Files.zip. The prefix is of the form YYYYMMDD, where YYYY, MM, DD represent year, month of year and day of month.
	__4. Use the Eclipse menu File > Import to open the import wizard.
	__a. In the import wizard select Archive File in the category General.
	__b. Use the Next button.
	__c. Select the radio-button Select Archive File.
	__d. Browse to the file you downloaded, select it and press Open.
	__e. The screen should show a new project for import.
	
	__f. Press Finish to import the files.
	__g. Open the Eclipse Project Explorer view. You should now see a new project in your Eclipse workspace. The project contains several image files and a JavaScript file.
	__5. Open and review the JavaScript file.
	__a. Open the JavaScript file in an editor, for example in the JavaScript or text editor in Eclipse.
	__b. The file looks similar to scrips you have already developed. It uses the debug output capabilities, it looks at the state value of a work item. The main code is a decision table that returns some text based on the value of the workflow state
	__c. The return statement below will return a URL and a state name as text. The place holder <URL> needs to be replaced by a real URL. The statement below works for the state Proposed. return "{{<URL>|Proposed}}"
	__d. The values of the State ID's have been identified by looking them up in the Process Configuration source as described in 5.3 Script Based Conditions section __7. __a. -__d. on page 157-158.
	__6. Prepare the workflow images so that they can be displayed in the Wiki. Rational Team Concert does not display all data provided by a link in the Wiki. It does however display images that are defined as a work item attachment.
	__a. Create a work item in which to store the attachments. Create a Task and name it “DO NOT DELETE ME - SERVING REFERENCED ATTACHMENTS”
	__b. Switch to the Links tab.
	__c. In the Attachments section use the button Add File....
	__d. Browse to the ScriptBasedCustomization_Lab_5_WorkflowImages folder in C:JSWorkshopsWorkspacesLab1.
	__i. Select the first image TechnologyReviewWorkflow_State_0_New.png.
	__ii. Click Open to upload the image file.
	__e. Upload all other images in the order of the file names.
	__i. In the Attachments section use the button Add File....
	__ii. Browse and select the next file
	__iii. Click Open to upload the image file.
	__f. Repeat the steps i-iii for all remaining files keeping the order of the files.
	__g. Save the work item.
	__7. get the URL for an attachment and add it to the script.
	__a. The work item should now contain all the images for all the state, including an image for an undefined state.
	__b. Right click on the attachment TechnologyReviewWorkflow_State_0_New.png and select copy URL.
	__c. Switch to the editor for the JavaScript file WorkFlowStateScriptedCalculatedValueProvider.js.
	__i. Search the line for the sate New, mark the <URL> string and replace it with the value of the URL you copied in the previous step.
	__ii. The line should now look similar to if(workFlowState=="") return "{{https://clm.process.ws/ccm/service/com.ibm.team.workitem.common.internal.rest.IAttachmentRestService/itemName/com.ibm.team.workitem.Attachment/1|New}}";
	__iii. The basic URL is a common URL that is used for all attachments. The individual attachments are accessed by their number.
	__d. Replace the rest of the <URL> strings with valid attachment URL's.
	__i. Replace all the <URL> strings left by the following code https://clm.process.ws/ccm//service/com.ibm.team.workitem.common.internal.rest.IAttachmentRestService/itemName/com.ibm.team.workitem.Attachment/ and leave the number out.
	__ii. Look up the Attachment numbers in the work item for all images. It is likely a consecutive list.
	__iii. Insert the attachment number at the end of the URL's.
	__e. Your code should now look similar like below.
	
	__f. The last line in the script will show an image if no matching state can be found. This adds an indicator to the users, that the process has been changed and the images are not correct anymore.
	__g. Save your changes to the JavaScript code.
	__8. Now you can configure your JavaScript based default value provider to test it. Switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. Use the Add... button to add a Calculated Value
	__b. As Name enter Visualize Workflow State
	__c. Select the Type Calculated Values
	__d. Select Script Based Calculated Value as Provider. The configuration dialog should look like below:
	__e. Press OK to set the configuration.
	__f. In the Configuration editor section to the right use the Browse... button to browse for your script.
	__i. Browse to your folder: C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization_Lab_5_WorkflowImages
	__ii. Select the Script below and use the OK button. WorkFlowStateScriptedCalculatedValueProvider.js
	__iii. Save the changed process configuration.
	__9. Configure the attribute to use the JavaScript Based Calculated Value. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__a. Select the Technology Review work item type. Scroll down to the Attributes section.
	__b. In the Attributes section check the Show only custom attributes check-box to narrow down your search.
	__c. Locate and select the custom attribute Workflow Information. Press the Edit button.
	__d. In the Attribute Editor use the Calculated Value drop down button and select Visualize Workflow State.
	__e. Add a dependency to the attribute Status. Select OK.
	__f. Save the change to the process configuration.
	__10. Test your work.
	__a. Create a work item of type Technology Review in the Eclipse Client.
	__b. Switch to the Tech Review Details tab
	__i. The workflow Information should be visible as below.
	__ii. Provide a Summary and other attributes as needed and save the work item.
	__iii. Now it shows the Proposed state.
	__iv. Change the states to check that the images match the states.
	__c. Create a work item of type Technology Review in the Web Client.
	__i. Switch to the Tech Review Details tab.
	__ii. The Workflow Information shows text for the new state. Use the Preview button to see the current value.
	
	__iii. Save the work item. Add required attributes if necessary. The Workflow information now displays the Proposed state.
	__iv. Move the work item through the states to confirm all is working as desired.
	You have successfully created a calculated value provider that displays the state machine as graphics.
	5.7 Summary
	5.8 Solutions

	__1. Browse to the download location of this workshop.
	__a. In the section Lab Material locate the link Lab 5 Solution Scripts.
	__b. Download the referenced file and store the file on your local drive and remember the location. The file on disk will be named YYYYMMDD_ScriptBasedCustomization_Lab5_Solutions_Scripts.zip. The prefix is of the form YYYYMMDD, where YYYY, MM, DD represent year, month of year and day of month.
	__2. Use the Eclipse menu File>Import to open the import wizard. Import the solution files following the steps in 5.6__4. on page 182.
	5.9 Appendix A - Script Troubleshooting

	Use a lot of logging.
	Use a text editor that does not lock the log file, detects changes to the log file and reloads the log file if requested. One good specimen of this type of text editor is Notepad++.
	If the client log does not contain information about your script, check the server log.
	Don't forget to reload and save your process configuration after changes to the scripts
	Close work item editors and re-open them to make sure the new script version is used in the work item.
	If you are not confident of the uploaded version of the script delete the script attachment from the process attachments.
	Variables and functions that get called cause com.ibm.team.repository.common.TeamRepositoryException: Unexpected exception type, if they don't exist.
	Missing Brackets or semicolons throw weird errors such as “missing ; before statement”.
	You can surround your code with throw/catch blocks in order to make it more resilient.
	5.10 Appendix B – Script Debugging
	5.10.1 Script debugging example with Chrome
	5.10.2 Script debugging example with Firebug

	__1. Open Firefox browser. If you don't have Firefox already installed on your system you can get it from this site. Try to install a version that follows the Rational Team Concert system requirements.
	__2. Within Firefox, navigate to the Firebug page, click the Install Firebug button and follow the instructions. Your browser will be restarted after installation.
	__3. In Firefox, navigate to Rational Team Concert, to the Nifty Application Project project area. For example, following the lab convention, you can directly navigate to: https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project
	__4. Log in with the user jim password jim.
	__5. Create a new work item of type Technology Review Note you can also open an existing work item.
	__a. If you create a new work item, give it a summary and save it.
	__b. Modify the url in your browser to add more information for debugging the script including the “?debug=true”. For example: https://clm.process.ws/ccm/web/projects/Nifty%20Applicaiton%20Project?debug=true#action=com.ibm.team.workitem.viewWorkItem&id=<YourCurrentWIID> Note that adding the “debug=true” parameter is not mandatory, but it will remove some code compression and provide more information available for debugging
	__6. Open Firebug clicking Tools > Firebug > Open Firebug, or clicking the icon in your browser
	__7. Switch to the Script tab, and click the Enable link to activate that view. You may be asked to reload the page for it to begin working.
	__8. Check the script has been loaded:
	__a. Open the drop-down list that appears at the top of the Firebug Script view
	__b. You should find the script listed under the root of your server Public URI, in this case as sub-nodes under “clm.process.ws/”
	__c. Click TotalCostScriptedCalculatedValueProvider,js script to make the code appear in the debugging section.
	__9. Add a breakpoint:
	__a. Click in the left margin of the code line where the value of the Estimated Invest is gathered: var estimatedInvest = workItem.getValue("com.acme.openup.workitem.attribute.estinvest");
	__b. You should see a red circle that denotes the breakpoint something similar as follows:
	__10. Debug the code:
	__a. Back in the Technology Review work item introduce a value in one of the attributes that will make the script fire, for example Estimated Effort
	__b. Firebug will get focus high-lighting the line with the breakpoint
	__c. The right side of the window provides lots of valuable information with the usual views you find in any debugger.
	__i. The Watch section may be the most useful sections when you are beginning to develop scripts like the ones in this lab. This is because uou are probably not familiar yet with the information you have access to or how to access it in work items. You can also add expressions in this view to further debug your code or test new code for new features you want to add to your scripts.
	__d. On top of the left side of the debug window you have access to the typical controls for controlling the debug code flow:
	5.11 Appendix C – Scripted HTTP Value Set Provider

	__1. Open the Eclipse client if it is not already opened and connect to your repository. You can use the workspace C:JSWorkshopsWorkspacesLab1 . Log in with the user jim password jim.
	__2. Open the project area editor for the Nifty Applicaiton Project project are and switch to the Process Configuration tab. Open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section.
	__a. In the Attribute Customization editor, select Value Sets. Use the Add button at the bottom of the editor or use a right click to add a new Value Set.
	__b. As Name enter Department Provider Scripted
	__c. As Type select Script Based Value Set.
	__d. As Provider select Script Based Value Set.
	__3. To download the example code, click at the Download example link in the Configuration editor.
	__i. Browse to the folder C:JSWorkshopsWorkspacesLab1ScriptBasedCustomization
	__ii. Change the file name to DepartmentProviderScripted.js
	__iii. Press the Save button.
	__iv. Save the process configuration.
	__4. To see the new script in Eclipse open the Project Explorer view.
	__a. Select the ScriptBasedCustomization project
	__b. Use the Refresh context menu entry or press F5.
	__c. The externally saved script file now shows up in Eclipse
	__d. Open the file for editing.
	__e. The example looks like below:
	__f. The script pushes values into an array and returns the array
	__5. Rename the class and prepare the script for better debugging like before.
	__a. Locate the string "com.example.ValueSetProvider" and replace it with "com.acme.providers.script.DepartmentProviderScripted" to rename the value set.
	__b. In the line after the function() declaration add the lines: var doDebug= true; var scriptname = "DepartmentProviderScripted";
	__c. Open one of the scripts you created before and copy the debug function over. Insert the code below right behind the statement return result. function debug(display){ if(doDebug){ console.log(scriptname + " " + display); } }
	__6. Prepare the script to use the HTTP connector:
	__a. Add the following dojo.require statement after the dojo.provide one:
	__b. Add a shortcut to the HTTPConnectorParameters to ease the development. To do so, add the following statement after the function() declaration: var HttpConnectorParameters = com.ibm.team.workitem.api.common.connectors.HttpConnectorParameters;
	__7. Add the parameters and the call the service:
	__a. First you need to build an object that will hold the parameters for the service call. Add the following code after the getValueSet function declaration statement:
	__b. To call the service with the provided parameters, add the following code:
	__c. If the parameters are well set and the call has succeeded, you will have the response for the service in the values variable. The result array will be returned with the desired data. Note that from this code template you can do whatever post-processing on the data you wish to do to customize the values to be presented to the user. In this example you will perform the same formatting as you did in Lab 4.
	Add the following code before the return statement, replacing the 2 lines after var result=[]; with this code:
	__d. The script code for the getValueSet() function should look like the following. Save your changes.
	__8. Reload the script.
	__a. Go back to the Attribute Customization editor. If you have closed it or navigated away from it, open the Project Area editor, switch to the Process Configuration tab and open the Configuration > Project Configuration > Configuration Data > Work Items > Attribute Customization section. Locate the customization type Value Set, expand its node and click at the customization.
	__b. In the Configuration editor section press Reload to upload the changes.
	__c. Save the Process configuration change.
	__9. Configure the Attribute for the new Attribute Customization
	__a. Open the Configuration > Project Configuration > Configuration Data > Work Items > Types and Attributes section.
	__b. Select the Technology Review work item type. Scroll down to the Attributes section.
	__c. In the Attributes section check the “Show only custom attributes” check-box to narrow down your search.
	__d. Locate and select the custom attribute Affected Departments. Press the Edit button.
	__e. Use the drop down button Value Set to select the Department Provider Scripted
	__f. Click OK and save the changes to the process configuration.
	__10. Test your new Value Set.
	__a. Create a new work item of Type Technology Review.
	__b. Open the Tech Review Details Tab.
	__c. Press the Add... button on the Affected Departments attribute.
	__d. You see the values retrieved from the service and presented formatted as below
	5.12 Appendix D – Changes in 4.0.3 attribute customization script based editor

	Appendix A Glossary
	Appendix B Notices
	Appendix C Trademarks and copyrights

