
Internal Control Audit Support

This is the fifth in a series of articles on how Rational Collaborative Lifecycle Management (CLM)
solutions support software development compliance.

To support internal control audits, you first have to document how you have implemented the controls
then prove that your teams are following them. The other articles in this series give examples of how you
can automate internal controls related to work authorization, segregation of duties and process change
control.

Part 1: Generating Audit Reports

Let’s start with proving adherence to controls. A key element of reporting compliance is proving a history
of consistent adherence. Here are two examples of audit reports that can be generated for a build.

In the first example, we generate a report on a build that flags any violations of the segregation of duties
between development and testing. It will also report a quality violation for any task included in the build
for which a corresponding test case is not found. This is a custom report that was built using Rational
Publishing Engine and the reportable REST APIs exposed by Rational Team Concert and Rational
Quality Manager. This is the same report example used in the Segregation of Duties article

These are the records and their relationships used in the Money That Matters sample application that are
relevant for this example:

Here is the Build Result in the example that we will report against:

The document specification for the report uses an input variable that defines the Build Label of
the build result on which we want to report. This value can be changed to make the report
against any build result desired.

The published document from the Money That Matters example looks like this:

Although the report looks a bit suspect because the test case name and implementation work
item name are almost exactly alike, this is correct. The naming conventions used in the Money
That Matters sample application are designed to make the relationships between elements easily
understood.

Now if we tweak the example data a bit we can cause some violations, as reported when we run
the report again:

In our second example, we use the Rational Publishing Engine launcher to run an audit report on
the build contents. Our Money That Matters project has a set of development tasks that are
implemented in a build. Each development task has a parent Story that provides the information
we want to report as the content for the build. Our report traverses the ImplementedInBuild
links to the development tasks then the Parent/Child links to the Stories.

We are also using a variable to provide the build label, but we are using a different build label for
this example.

Here is the result of this report:

The example reports we used work against the Money That matters sample in CLM 2011 and are
downloadable here. Although not demonstrated here, you can configure an ant script to generate a set
of reports automatically with each build.

Part 2: Implementing Internal Controls

Now we’ll show an example of how a Process Engineering Team leverages the CLM solution to manage
Internal Controls and CMMI compliance. This team

● Uses Rational Requirements Composer to capture features representing Internal Controls
and CMMI process capabilities

● Leverages team discussions on how they could automate a specific process capability

● Creates User Story Elaborations to include the agreed-upon solutions for the different
internal controls and guidelines to be implemented in the software development process

● Links each process requirement to an analysis task and a Process Change Authorization
record for the Process Engineering team to manage the work of implementing the
proposed changes. This provides an audit trail and helps implement changes consistently
across an organization.

The process engineering team has their own requirements project called Process Engineering
Team Project (Requirements)

In the Features folder we see two CMMI process areas captured and a folder for Internal
Controls.

In the Internal Controls folder, we hover over Feature 138: Authorization to Implement
Requirements to see the description and other details.

In the CMMI folder and sub-folder to review the Requirements Management Specific Goals
(SG) and Specific Practices (SP).

Here you see a capture of the SGs and SPs as specified by CMMI. We have also leveraged tags
to indicate the CMMI level supported.

On Feature 125: SP1.1-2 Establish objective criteria for the evaluation and acceptance of
requirements we can review the details, including a team discussion on options for automating
this practice.

Based on the discussion, the process engineer links this Feature to a Process Change
Authorization already in the Process Engineering Change Management project.

Often, the way a process is tailored for a project or organization is influenced by many factors
including regulations, internal controls and guidelines. In these cases it is extremely useful to
maintain the set of User Story Elaborations that represent how the process is used. This helps
tie test cases to the requirements and helps ensure that a change to one process requirement
does not break the implementation for another.

An alternative for a more robust and comprehensive representation of the process is to use
Rational Method Composer.

Let’s look at an example of how this team uses User Story Elaborations. Here you see where the
User Story Elaborations are managed in the requirements project.

And here are the details for User Story Elaboration 152: Provide Authorization to Implement
Requirements.

Our process engineer edits the User Story Elaboration to add the agreed-upon solution (work
item template and review checklist) as part of the conversation:

Then he links the User Story Elaboration to the Process Change Authorization work item that
represents its approval and implementation.

We have not detailed the steps for implementation and testing of the solution. Rather, we provide the
observation that management of the work into iterations or releases is accomplished in Team Concert,
while capture of test cases and test results is accomplished in Quality Manager. Lifecycle traces help
ensure that all requirements are implemented and tested, thus supporting an audit trail for proving CMMI
compliance and/or adherence to internal controls. For rollout of consistent process solutions
incrementally throughout an organization or Enterprise, the ability to manage the complexity of
requirements, implementation projects and testing repeated across parts of the organization is
challenging. The foundational capabilities in the Collaborative Lifecycle Management solution provide a
means of accomplishing the work most efficiently and effectively.

In this article we showed an example of using Collaborative Lifecycle Management to help manage
process compliance to internal controls and industry standards.

