
®

IBM Software Group

© 2009 IBM Corporation

Continuous integration using
 Rational Team Concert

November 4, 2009

Peter Steinfeld

IBM Software Group | Rational software

2

Overview

� The importance of using continuous integration

� How to use Rational Team Concert (Jazz) to

implement continuous integration for your project

�Stream setup

�Build setup

�Foolproof delivery to the integration stream

�How to debug broken builds

� The conversation you want to have

IBM Software Group | Rational software

3

The importance of continuous integration

"Happy families are all alike; every unhappy family is unhappy in its own way.“

 Leo Tolstoy (the first line of Anna Karenina)

�Integration is hard

�It requires project-wide communication and coordination

�It frequently uncovers unanticipated problems

�Integration takes time

�It’s difficult to predict how long integration will take

�Since integration is project wide, a problem in one area can block
progress in another

�Integration typically happens at the end of a project, the worst time to
introduce risk and delay

IBM Software Group | Rational software

4

Critical aspects of continuous integration

�The project has a single main stream of development – the integration stream

�The integration stream builds successfully every day

�Automated tests run as part of the build

�Clear project status is visible via the build results

Successful projects practice continuous integration

IBM Software Group | Rational software

5

 Developer

Perspectives of project stakeholders

�Delivers code and tests to
the integration stream
continuously.

�Is careful to not break the
build.

�Fixes broken builds, no
matter who broke it.

 Tester Project manager

�Build status is clear from the
published build results

�Latest good build is the one
to test.

�Knows project status by just
looking at the build results.

�Knows that a feature has
been implemented when it’s in
a build.

IBM Software Group | Rational software

6

Barriers to continuous integration

�Integration delays of delivery of functionality. It takes extra work

for developers to keep pace with the integration stream.

�Integration incurs the overhead of dealing with build problems.

Such problems may be unrelated to a specific delivery.

�Integration requires expertise in the associated technologies –
configuration management, builds, etc.

�Integration forces developers to communicate with each other
and with the build team. Factors such as geographic

disbursement can make this a real problem.

�There’s never a good time implement continuous integration!

We know that it’s a good idea, but we’re busy writing and
debugging code.

IBM Software Group | Rational software

7

Why you need continuous integration

�Continuous integration reduces surprises and risk.

�There are many small integrations throughout the project
rather than a few big ones.

�There’s no “death march” at the end of the project when

integration is forced.

�Continuous integration promotes communication and

cooperation among developers.

�Continuous integration makes project status transparent.

�Schedules are more predictable.

�Continuous integration is good for morale. Everyone sees the
project making steady progress.

IBM Software Group | Rational software

8

Essential aspects of continuous integration

� A single integration stream

� Automated, daily build

� Produce the customer deliverable every day

� Build runs automated tests – if the tests fail, the build fails

� Fix broken builds immediately

� Transparency

� Build success is transparent

� Functionality in the build is transparent

"Successful daily builds are the heartbeat of a software project. If you do not have

successful daily builds, then you have no heartbeat, and your project is dead!“

 Jim McCarthy, Microsoft VC++ product manager

IBM Software Group | Rational software

9

How to set up continuous integration
 in Rational Team Concert

� Create an integration stream – This is where all of the

project’s source code lives.

� Each developer creates a personal Jazz workspace

that “flows with” the integration stream. Each
developer works in her own Jazz workspace and

integrates it regularly with the integration stream.

� Set up a build of the integration stream. The build will
produce the customer deliverables, run tests, and provide

status.

IBM Software Group | Rational software

10

The integration stream

� A Jazz stream captures a set of versions of files

�Similar to the concept of a branch in other CM systems

�The stream changes when people deliver new content

� Streams contain Jazz components

� Jazz components contain directories and files

Everyone is collectively responsible for the integrity of the integration

stream.

IBM Software Group | Rational software

11

A sample Jazz integration stream
Stream name

List of components in
the stream

Stream description

IBM Software Group | Rational software

12

The developer’s Jazz workspace

� Each developer has her own Jazz workspace

� All work is done initially in the developer’s Jazz workspace

� The developer’s Jazz workspace “flows with” the integration stream

�When the Jazz workspace is created, its contents match the contents of

the integration stream at the time of the creation of the workspace

� “Accept” operations transfer changes from the integration stream to the
developer’s Jazz workspace

� “Deliver” operations transfer changes from the Jazz workspace to the

integration stream

Note that a Jazz workspace is not the same as an Eclipse workspace.

IBM Software Group | Rational software

13

A sample Jazz developer’s workspace
Workspace name

List of components in
the workspace

The flow target of the
workspace

IBM Software Group | Rational software

14

Jazz streams, workspaces, and files

� Different versions of the same file can exist –

�On the developer’s workstation

� In the developer’s Jazz workspace

� In the integration stream

� At the moment a file is modified and saved, a new, different version

exists on the workstation (unresolved).

� When the file is checked in, that version is transferred to the Jazz

workspace (outgoing).

� When the change is delivered to the integration stream, that
version will exist in the integration stream (incoming to other

workspaces).

� The “Pending Changes” view shows the file states.

IBM Software Group | Rational software

15

Using the Pending Changes view

Changes in the integration
stream, but not in the Jazz

workspace

Changes on the workstation
not yet checked in

Checked in changes in the
workspace that have not yet

be delivered to the integration
stream

IBM Software Group | Rational software

16

Setting up a Jazz build

� The build has its own Jazz workspace, just like a developer’s Jazz

workspace.

� You must create a script to do the actual build.

�The build should produce the artifacts that will be delivered to the

customer

�The build should run the automated tests

� The build runs on an build machine

�Multiple machines can be used for efficiency

� Schedule the build –

�Schedule a continuous build for small teams

� Continuous builds only run if new changes have been delivered

�Schedule fixed build times for large teams and long builds

� Fixed times enable developers to plan coordinated deliveries

IBM Software Group | Rational software

17

A sample Jazz build definition -- overview

Build name

List of build engines that
might run this build

This is the
build

Overview

IBM Software Group | Rational software

18

A sample Jazz build definition -- scheduling

Runs every day

This is the
build Schedule

This is a continuous
build that starts

every 257 minutes

IBM Software Group | Rational software

19

A sample Jazz build definition – source control

Don’t build if there are
no new deliveries

The versions of files
in the build always

match the workspace

The Jazz workspace
for the build

IBM Software Group | Rational software

20

A sample Jazz build definition – build script

The script for the
build

IBM Software Group | Rational software

21

Running the builds

� Builds are run automatically or can be submitted on demand.

�Continuous automatic builds only get run if new deliveries have been
made since the last build.

� Each build run produces a build result

�The build result has a clear pass/fail status

�Build result contains log files

�Build results contains links to artifacts produced by the build

�Build results report test results

Build results are universally visibleBuild results are universally visible

IBM Software Group | Rational software

22

Sample Jazz build results view

A check mark means
the build succeeded

A red “X” means the
build failed

Build results view
The build result for the

highlighted build is
displayed in its own

view

IBM Software Group | Rational software

23

A sample Jazz build result

Test results

The snapshot captures
the exact file versions

used in the build

Link to the artifacts
produced by the build

Log files produced
by the build

The name of the build’s
Jazz workspace

Changes delivered
since the last build

IBM Software Group | Rational software

24

What happens during a build

� A build request is submitted, either on schedule or by user request

� For scheduled build requests with no newly delivered changes, nothing happens

� The build machines poll the Jazz server looking for build requests

� The build request gets matched to a build machine

� Changes are accepted from the integration stream to the workspace of the build

� A snapshot is created of the build’s workspace

� The build machine fetches files using the versions in the snapshot

� The build script runs on the build machine

� Results are reported to the Jazz build result

�Log files

�Test results

�Created artifacts

IBM Software Group | Rational software

25

Personal builds

� Allow developers to do a test build of the contents of their Jazz

workspace before delivering to the integration stream

� Similar to integration builds

�Personal builds use the same build definition as the integration build

�Personal builds run on the regular build machines

�Personal builds use the regular build scripts

� But they’re different …

�Personal builds take input from a developer’s Jazz workspace rather
than from the build’s workspace (the integration stream)

�Personal builds do not create snapshots

IBM Software Group | Rational software

26

Requesting a personal build

The Jazz workspace
from which the source

code is taken
Checkbox indicates a

personal build

The name of the build, the same
build used for the integration

stream

IBM Software Group | Rational software

27

Daily project rhythm

� Developers deliver changes to the build

� Builds run and report results

� Broken builds get fixed immediately

� Everyone watches the builds for status

� System test engineers pick up test artifacts from the Downloads

link on the build results page

IBM Software Group | Rational software

28

Foolproof delivery process

� Jane, our developer, accepts from the integration stream into her Jazz

workspace – now her Jazz workspace matches the integration stream

� Jane develops new code and automated tests in her own Jazz

workspace

� Meanwhile, other developers deliver changes to the integration stream

� When Jane is ready to deliver, she accepts changes from the integration
stream into her Jazz workspace again and does any necessary

integration

� Jane does a personal build from the files in her Jazz workspace

� If the personal build succeeds, she delivers to the integration stream

� If the personal build fails, she continues working until she gets a

successful build in a workspace that contains a mix of the current
integration stream and Jane’s changes

Developer deliveries must not break the buildDeveloper deliveries must not break the build

IBM Software Group | Rational software

29

Fixing broken builds

� Create a work item

� Analyze the log files

� Analyze the test results

� Look at the changes delivered since the last build

� Use the build’s snapshot to reproduce the build’s contents on a

workstation

�Compare the snapshot to Jane’s workspace

�Create a Jazz workspace with the same contents as the snapshot to

reproduce the problem

IBM Software Group | Rational software

30

A sample Jazz build result

Test results

The snapshot captures
the exact file versions

used in the build

Link to create a work item
associated with this build

Log files produced
by the build

Changed delivered
since the last build

IBM Software Group | Rational software

31

Using snapshots

Compare what went
into the build with a
developer’s Jazz

workspace

Create a new Jazz
workspace that matches
what went into the build

The snapshot name is
derived from build that
created this snapshot

IBM Software Group | Rational software

32

 You

The conversation you want to have …

We have clean builds every day.

 Your manager

How’s the project going?

What have you implemented so far? We’ve completed features A, B, and
C, and are working on D and E.

How do you know that A, B, and C
are complete?

We have automated tests that check
them in every build.

That’s great! How can I try them
out?

Just grab them from latest build.
Let’s do it right now …

IBM Software Group | Rational software

33

� jazz.net -- https://jazz.net/index.jsp

� Jazz build FAQ --
https://jazz.net/wiki/bin/view/Main/BuildFAQ

� Personal builds --
http://jazz.net/wiki/bin/view/Main/BuildPersonal

� psteinfe@us.ibm.com

References

IBM Software Group | Rational software

34

Questions

Questions?

IBM Software Group | Rational software

35

© Copyright IBM Corporation 2009. All rights reserved.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials
to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

