..'IH

| IBM Software Group

Building Rational Collaborative Lifecycle Management (CLM)

Enabling Continuous Integration for the Enterprise

Martha DasSarma, Sonia Dimitrov, Christopher Maguire, Peter Steinfeld

software

May 4, 2011

© 2009 IBM Corporation

‘ IBM Software Group | Rational software

Building Rational Collaborative Application Management

*On June 14th, 2011, we will ship Rational CLM
*CLM integrates the work of 170 people and 4 product teams

=To ensure that we can ship on June 39, we build the
integrated product every day

=*Normal continuous integration techniques do not scale to
projects with many people and many teams

=Here’s how we do it...

IBM Software Group | Rational software

Topics

=Continuous integration —

*Why it's good and how it’s usually done
=Implementing continuous integration for large teams is hard

» How we scale continuous integration to the 4 CLM product
teams

»Details of the required build infrastructure

=Details of the individual builds

‘ IBM Software Group | Rational software

Why continuous integration is good

»Continuous integration reduces surprises and risk.

*There are many small integrations throughout the project rather
than a few big ones.

*There’s no “death march” at the end of the project when
integration is forced.

»Continuous integration promotes communication and cooperation
among developers.

»Continuous integration makes project status transparent.
=Schedules are more predictable.

=Continuous integration is good for morale. Everyone sees the
project making steady progress.

‘ IBM Software Group | Rational software

How continuous integration is usually done

Successful projects practice continuous integration

=The project has a single main stream of development — the integration stream

=Developers deliver to and collaborate in the integration stream

=Developers can run a personal integration build prior to delivery to
validate their changes

»The integration stream builds successfully every day —
a successful build validates the stream

=Automated tests run as part of the build

=Clear project status is visible via the build results

‘ IBM Software Group | Rational software

But continuous integration for large projects is hard

=170 people work on CLM

=People are located in many places -- Beaverton, Brunswick, California,
China, Florida, France, Haifa, India, Littleton, Madison, Ottawa, Perth, RTP,

Saskatoon, Toronto, Virginia, ...
=There are 4 product teams — Jazz Foundation, RTC, RRC, and RQM

»Teams work in 5 project areas on 3 separate Jazz servers -- jazzdev,
jazzdev02, jazzdev03

*There are too many people to collaborate in one stream

=Each product team has its own community, processes, and culture

*Multiple Jazz servers make a single integration stream impossible

IBM Software Group | Rational software

And yet ...

=We build CLM twice a day, every day
=24 of the last 25 builds were green
=A total of 389 CLM builds with 58 failed builds for an 85% success rate

How are we able to do this?

IBM Software Group | Rational software

Topics

=Continuous integration —

="Why it's good and how it’s usually done

=Implementing continuous integration for large teams is hard

= How we scale continuous integration to the 4 CLM
product teams

»Details of the required build infrastructure

=Details of the individual builds

IBM Software Group | Rational software

Vocabulary lesson

»CLM — Collaborative Lifecycle Management product
»Foundation — short for Jazz Foundation

»RTC — Rational Team Concert product

*RRC — Rational Requirements Composer product
*RQM — Rational Quality Manager product

=UA — User Assistance, also known as documentation

*FVT — Functional Verification testing — the functionality of a single product

»SVT — Systems verification testing — the interactions between products

‘ IBM Software Group | Rational software

Structure of the CLM build

Foundation

CLM |

»Products share from their dependencies — for example, RQM depends
on and shares code with RTC and Foundation

=Dependencies determine build order

IBM Software Group | Rational software

Continuous integration in CLM — how we build it

Successful projects practice continuous integration

=Each product team maintains a CLM integration stream

»Builds from the products’ CLM integration streams contribute to the
CLM build

=The CLM builds run every day, validating the content of the product teams’
integration streams

»Development teams can do a test build of the full CLM stack to validate
their own stream and build

=No automated tests run as part of the CLM build, but manual testing is
done on the CLM build and automated tests run in the product builds

=Green CLM builds are a good indicator that the project is going well

IBM Software Group | Rational software

=Each build is a single RTC build definition — .
All builds support RTC personal builds

=Each build is simple and complete — it transforms source code into testable
artifacts that the customer sees (zips and installable offerings)

=All builds use similar underlying technology — Common Component Build
(CCB) tool, shared build engines, scripts to maintain the build farm, ...

= All build-to-build communication is via versioned repositories — for example,
the Foundation build produces a repository that’s input to the RTC build

»Build technology supports automated adoption of latest promoted version of
upstream builds

*There are many big builds, requiring a large, powerful build infrastructure

‘ IBM Software Group | Rational software

-

Build rhythm

= All product builds follow the same rhythm
=Daily builds of Foundation with a 98% success rate
=Daily builds of RTC that adopt the latest good Foundation build with an 84% success rate

»Daily builds of RRC, RQM, and CLM based on the latest good RTC build and its
matching Foundation build with success rates of 95%, 85%, and 96%

=Weekly builds with more test pressure
--Some teams require explicit approvals from team leads

=Milestone builds every 3 weeks that we use to self-host
=All CLM builds are tracked by Track Build ltems

"Successful daily builds are the heartbeat of a software project. If you do not have successful
daily builds, then you have no heartbeat, and your project is dead!*

Jim McCarthy, Microsoft VC++ product manager

IBM Software Group | Rational software

Product team rules of the road

=Each product team build creates its own testable product
*Product teams contribute new features at their own pace

»Product teams determine their own development, test, and
delivery process

But

»Teams must continuously adopt new versions of upstream builds

= Each team must maintain a build/stream for building CLM

‘ IBM Software Group | Rational software

Product team rules of the road —
maintain a stable CLM stream

=Each product team build maintains a stable CLM integration
stream and build, but how??

»All product teams are too large for developers to deliver
directly to the stable CLM integration stream, thus ...

»Each product team maintains a stable CLM integration stream
using one of two strategies —

=Nightly builds (RRC and RQM)

=»Component team builds (Foundation and RTC)

IBM Software Group | Rational software

Nightly builds (RRC and RQM) —
maintaining a stable CLM stream

Integration
build

=Developers deliver to the nightly stream and build

=The development manager decides when to deliver from the
nightly stream to the integration stream and build

‘ IBM Software Group | Rational software

Component team builds (Foundation and RTC) —
maintaining a stable CLM stream

Component V2
team build

Integration
build

Component
team build

»Product team is subdivided into component teams
=»Each component team has its own stream and one or more builds from that stream
=Component team builds are small, fast, and run JUnits

=Component stream content includes code, tests, and build configuration files — all are
controlled in SCM and delivered simultaneously by the component team

=Each component team has a rotating release engineer role, responsible for integrating
with the integration stream and build

=Foundation has 11 component team builds, RTC has 24

‘ IBM Software Group | Rational software

Validating CLM and product team builds

»Build breakages are monitored by the build’s release engineer

=Everyone collaborates to fix broken builds — release engineers and
developers

=Green builds are automatically promoted for use by consumers —
developers, testers, and downstream builds

=The whole CLM development organization self-hosts on milestone builds

=Types of validation tests —

=Scans run in build (Eclipse version numbers, translatability — CHKPII,
copyright validation) — failure does not prevent automatic promotion

=JUnit tests run by developers and in the build — failures in the build
prevent automatic promotion to downstream consumers

»Functional Verification Testing (FVT) — done post-build
=Systems Verification Testing (SVT) — done post-build
=Security testing (AppScan) — done post-build

‘ IBM Software Group | Rational software

How Martha builds CLM

*Martha DasSarma is the CLM release engineer
»Starting point — green Foundation and RTC builds
»Foundation builds daily
»RTC builds daily and adopting the latest good Foundation
=Martha builds RRC using the same Foundation as RTC
=Martha builds RQM using the same RTC and Foundation
»Martha builds CLM
»End-to-end build time — 10 hours

= The end-to-end build is not automated —
6 separate build requests are required

This works because each product team maintains a stable CLM stream

IBM Software Group | Rational software

How Martha builds CLM —
many people can do this!

»All products use the same version of RTC for development, thus ...
=All builds can be controlled from a single RTC client

*Anyone on the release engineering and many people on the product
teams product team can do a full stack build — either production or

personal builds

»Product teams can test changes that affect their consumers by
doing a full CLM stack build

»The release engineering team can go on vacation

Product teams can validate their CLM streams by doing a CLM build

IBM Software Group | Rational software

Test build of CLM —
RQM use case

How the RQM product team can verify that they won’t break the CLM build

=The RQM team does a personal build of the RQM build
Build time — 65 minutes

=The RQM team adjusts the configuration of the CLM build to use the
RQM personal build as input

»The RQM team does a personal build of CLM
Build time — 75 minutes

=|[f necessary, the RQM team installs and tests the resulting CLM

=|f all is good, the RQM team delivers from the personal stream to the
RQM CLM stream

=The next RQM integration build will contain the same changes

IBM Software Group | Rational software

Topics

=Continuous integration —

=Why it's good and how it’s usually done
="Implementing continuous integration for large teams is hard

» How we scale continuous integration to the 4 CLM product
feams

=Details of the required build infrastructure

=Details of the individual builds

‘ IBM Software Group | Rational software

Infrastructure to support CLM builds

On March 2nd 2011, 222 CLM-related builds ran over 200,000 tests!

=] arge scale development efforts need a powerful infrastructure

»Jazz servers for development, build, test, and project management
=Release engineering team to keep the builds running smoothly
»Shared, standard build tooling

»Build farm that can handle peak build volume

‘ IBM Software Group | Rational software

Rational Team Concert server infrastructure --
providing an RTC development

»3 Jazz servers — jazzdev, jazzdev02, and jazzdev03
»6 Linux machines and 5 database servers (shared with the jazzop* servers)
=4 engineers maintaining the infrastructure and managing self-hosts

»1500 GB of data (controlled in RTC source code management)

‘ IBM Software Group | Rational software

The CLM release engineering team —
watching over the five CLM builds

» Release engineers are the guardians and keepers of the builds

»6 release engineers in 4 time zones and 5 locations — Bangalore,
Littleton, Ottawa, Guadalajara, Beaverton

»Release engineers share build tools, build accounts, and scripts to
maintain the build farm

*|[n general, one release engineer is responsible for each product

»Release engineers back each other up

‘ IBM Software Group | Rational software

Shared build tools

"Release engineering scripts

»Manage the build farm

=Set up new machines

»Monitor disk usage

»Update Jazz build engines
=Deploy to test systems

=Common Component Build (CCB) tool

»Support for code sharing through componentizing builds

»Build-to-build communication via Installation Manager repositories

=Shared configuration files for component team and production builds
»Dependency handling (suppliers) supporting --

= Automated adoption of the latest good upstream builds
=Support for test builds of the full stack

‘ IBM Software Group | Rational software

Build farm —
ready when a build is needed

o
= The build farm must support peak build volume

=74 Jazz build engines on 55 physical machines
»Foundation/RTC/CLM -- 59 Jazz build engines on 43 physical machines
*RQM -- 8 Jazz build engines on 5 physical machines

*RRC -- 4 Jazz build engines on 4 physical machines

=UA -- 3 Jazz build engines on 3 physical machines
=7000 GB served up by 3 disk servers

=2000 GB RAID 0 for personal builds

=5000 GB RAID 1 for production builds

=2 engineers maintaining the build farm’s machinery

IBM Software Group | Rational software

Topics

=Continuous integration —

=Why it's good and how it’s usually done
="Implementing continuous integration for large teams is hard

» How we scale continuous integration to the 4 CLM product
feams

»Details of the required build infrastructure

=Details of the individual builds

‘ IBM Software Group | Rational software

Structure of the CLM build --
product specific details

Foundation
mi i{ e

CLM

‘ IBM Software Group | Rational software

Structure of thﬁ/FOundation \iOn detalls

=54 people
=3 production builds/day

=98% success rate
Doc . . s
=150 minutes basic build time
=540 minutes build time, including JUnit

tests for DB2, SQL, DB2/z, Oracle,
@ R Derby

=9.3 GB/build
=1600 GB total space, shared with CLM

=37,806 automated tests/build
Q1 component team builds J

[CM |

‘ IBM Software Group | Rational software

Structure of the CLM build — RTC details
/RTC N

=110 people

=2 integration builds/day

=»84% success rate
=270 minutes/build RRC @

=25 GB/build

=1200 GB total available space
»13,867 automated tests/build

@4 component team builds /

()

——

‘ IBM Software Group | Rational software

Structure of the CLM build — RQM details

(¢ mam R

=59 people

=2 integration builds/day
=85% success rate

=65 minutes/build

=4.9 GB/build

=380 GB total available space
»Testing done by FVT team

Q\Iightly and integration builds/

‘ IBM Software Group | Rational software

Structure of the CLM build — RRC details

/wrRe N

=33 people
@ ounda’llon =3 integration builds/day

®95% success rate

] =65 minutes/build

\ =4.9 GB/build

=520 GB total available space

\ »Testing done by FVT team

=Nightly and integration builds
cLn_ > < /

‘ IBM Software Group | Rational software

Structure of the CLM build — UA details

=Documentation (for all products)

@ oundatlon

=21 people

=9 integration builds/day for
7 different builds

*98% success rate
=15 to 200 minutes/build
=160 MB/build
»1400 GB total available space

=0 automated tests/build

=Only integration builds

‘ IBM Software Group | Rational software

Structure of the CLM build — CLM details

Foundation]

RTC

CLM
=12 people
=2 integration builds/day

=96% success rate

\; =75 minutes/build

=16 GB/build

=1600 GB total available space,
shared with Foundation

=0 automated tests/build

@nly integration builds

~

/

‘ IBM Software Group | Rational software

Summary statistics
=2 production CLM builds/day

=170 people in 17+ locations

=over 200 builds/day, personal and integration
=222 builds run on March 24, 2011
=over 200,000 automated tests per day
»226,522 in non-component team builds on April 26", 2011
=48 build definitions
=74 build engines
=8500 GB disk space

=3 Jazz servers

\\J;

IBM Software Group | Rational software

Questions?

