

IBM Software

© 2010 IBM Corporation

Innovate2010 Technical Workshop

OSLC Workshop

Consumer & Producer labs

 Workshop Exercises

© Copyright International Business Machines Corporation, 2010. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Overview Page 3

Contents

OVERVIEW 4
INTRODUCTION...4
ICONS..4

LAB 1 SETTING UP FOR OSLC DEVELOPMENT ...5
1.1 DOWNLOAD AND UNZIP THE REQUIRED FILES FROM JAZZ.NET ...6
1.2 SETUP A TOMCAT TEST SERVER ..8
1.3 INSTALL THE REST CLIENT ADD-ON FOR FIREFOX..9
1.4 TEST THE REST CLIENT SETUP...9
1.5 TEST THE WTP AND TOMCAT SETUP ...11
1.6 SETUP FOR THE REMAINING LABS ..21

LAB 2 AN INTRODUCTION TO THE OSLC APIS ..22
2.1 THE ROOT SERVICES DOCUMENT...22
2.2 THE REST CLIENT ADD-ON ...26
2.3 OSLC SERVICES...28
2.4 SEARCH FOR SOME WORK ITEMS ...32

LAB 3 ACCESS OSLC APIS PROGRAMMATICALLY...35
3.1 LOADING EXAMPLES..35
3.2 ACCESSING TO THE ROOT SERVICES DOCUMENT ..38
3.3 RETRIEVE THE SERVICE PROVIDER CATALOG USING XPATH ..42
3.4 JAZZ FORM-BASED AUTHENTIFICATION...44
3.5 WORK ITEM UPDATE ..49

LAB 4 IMPLEMENTING THE OSLC APIS IN A SERVICE PROVIDER ...55
4.1 LOADING EXAMPLES..55
4.2 SETTING UP THE SERVER RUNTIME ENVIRONMENT AND RUNNING THE SAMPLE SERVER................58
4.3 INTERACTING WITH THE SAMPLE PROVIDER ...60
4.4 MODIFYING THE PROVIDER, ADDING ANOTHER DIALOG...61
4.5 TEST CHANGES ...64

APPENDIX A. NOTICES ...66

APPENDIX B. TRADEMARKS AND COPYRIGHTS..68

IBM Software

Page 4 [Asset Title. Change font to black]

Overview

Introduction

These labs will help guide you to leverage the Open Services for Lifecycle Collaboration (OSLC)
standard interfaces for interoperating with IBM Rational Team Concert as well as other Jazz-based
products. These labs will highlight key aspects by leveraging web browser access and programmatic
access via Java client programs. The final lab will illustrate by an example how to write your own server
using Java servlets. After you complete these labs, you will have a good foundation by which to leverage
OSLC to implement in your interoperability project.

Icons

The following symbols appear in this document at places where additional guidance is available.

Icon Purpose Explanation

Important!
This symbol calls attention to a particular step or command.
For example, it might alert you to type a command carefully
because it is case sensitive.

Information
This symbol indicates information that might not be
necessary to complete a step, but is helpful or good to know.

Trouble-
shooting

This symbol indicates that you can fix a specific problem by
completing the associated troubleshooting information.

IBM Software

Appendix Page 5

Lab 1 Setting up for OSLC Development

Lab Scenario

You have a new assignment on a team to integrate two Application
Lifecycle Management (ALM) tools using OSLC. The first thing to do is to
learn how to use OSLC services and how to provide your own OSLC
services. This workshop will help you do just that.

Once you have completed this module, you will be ready to start
developing OSLC integrations.

In order to complete and get the most out of this workshop, it is
recommended that you are already familiar with RTC as a user. Of
particular help would be familiarity with work items. In addition, you should
have basic familiarity with Java programming and debugging using
Eclipse. Note that OSLC can be used from any programming language
that can invoke or provide web services and not just Java; however, the
examples in this workshop are written in Java.

Note that these instructions are written specifically for RTC 2.0.0.2 on
Windows. Please adjust accordingly for different operating systems
(primarily the Eclipse client download and the file paths) and RTC
versions (downloads).

Along with this lab document(s), you should have received or downloaded
a file with a name of the form
ExtensionsAndIntegrationsLabCodeRepository-yyyymmdd.tar. It is an
exported RTC repository. You will import it at the end of this lab.

The repository will contain materials for other related workshops. Those
other workshops also have initial labs like this one to set up the
environment. You can run through more than one setup lab on the same
RTC installation. Just note that some steps may be duplicated, such as
the initial download steps or the final step to import the repository.

IBM Software

Page 6 [Asset Title. Change font to black]

1.1 Download and Unzip the Required Files from jazz.net

__1. Download the Express-C edition zip files.

__a. Go to the RTC 2.0.0.2 all downloads page at https://jazz.net/downloads/rational-team-
concert/releases/2.0.0.2?p=allDownloads. There may be iFix releases available beyond
2.0.0.2. You can download one of those instead. The file sizes will vary from what is shown
below.

__b. Scroll down to the Express-C section and download the highlighted file.

__2. Unzip the product files. For this lab, our installation directory will be C:\RTC2002Dev.

__a. Unzip the Eclipse IDE and server download into C:\RTC2002Dev.

__b. Your C:\RTC2002Dev folder will look pretty standard at this point. Much like setting up a
sandbox or demo environment.

__3. Add the Eclipse Web Tools Platform (WTP) to the RTC client.

__a. Start the Eclipse client (C:\RTC2002Dev\jazz\client\eclipse\eclipse.exe).

__b. When prompted, select an Eclipse workspace. These instructions will use
C:\RTC2002Dev\DevWS.

IBM Software

Appendix Page 7

__c. Minimize the Welcome via this () button near the top of the window.

__d. From the menu bar, select Help > Software Updates…

__e. In the Software Updates and Add-ons dialog, switch to the Available Software tab,
expand Ganymede Update Site, check the Web and Java EE Development entry and
then click Install…

__f. Eclipse calculates the dependencies and shows you the features it will install. Click Next in
the Install wizard.

__g. On the second page of the Install wizard, select I accept the terms of the license
agreements (read them first if you wish) and then click Finish.

__h. When prompted to restart Eclipse, click Yes.

__i. Your C:\RTC2002Dev folder will still look the same. The WTP features and plug-ins were
added to the features and plugins folders under C:\RTC2002Dev\jazz\client\eclipse.

IBM Software

Page 8 [Asset Title. Change font to black]

1.2 Setup a Tomcat Test Server

__1. This server will be used to run the OSLC provider sample. Download a Tomcat 5.5.28 Tomcat
server from http://tomcat.apache.org/download-55.cgi or one of the mirrors.

__2. Unzip the downloaded apache-tomcat-5.5.28.zip file. This workshop will assume the file is
unzipped to the root of the C: drive. This will create the folder C:\ apache-tomcat-5.5.28 that
contains the server.

__3. Running Tomcat.

__a. If you have a J2SE 5 or higher JRE installed as your default JRE, Tomcat should be ready
to run. From Windows explorer, simply double click the startup.bat and shutdown.bat files
found in C:\apache-tomcat-5.5.28\bin.

__b. Alternatively, you can download a J2SE 5 or higher JRE (or JDK), unzip it and then set the
JAVA_HOME variable before starting Tomcat. For example:

__i. Download a J2SE 5 JDK and unzip it to C:\J2SE5

__ii. Create a SetTomcatEnv.bat file with the single line:

set JAVA_HOME=C:\J2SE5

__iii. Open a command prompt and run this bat file and then start and stop Tomcat
from that same command prompt. You can run any of the other Tomcat
commands from the same prompt.

__c. Another alternative is to make a small addition to the startup and shutdown bat files found
in C:\apache-tomcat-5.5.28\bin.

__i. Download a J2SE 5 JDK and unzip it to C:\J2SE5

__ii. In both the startup.bat and shutdown.bat files, add the following lines near the top
of the files (just after the opening block comment).

rem JAVA_HOME check
if not "%JAVA_HOME%" == "" goto gotJavaHome
set JAVA_HOME=C:\J2SE5
:gotJavaHome

__iii. From Windows explorer, simply double click the startup.bat and shutdown.bat files
to start and stop Tomcat.

__4. This workshop will assume that Tomcat can be started or stopped simply by double clicking the
start or stop bat file from Windows explorer. That is, either 3.a or 3.c above is true.

IBM Software

Appendix Page 9

1.3 Install the REST Client Add-on for Mozilla® Firefox®

__1. This workshop is written assuming Mozilla Firefox and the REST Client add-on. If you can not
use Mozilla Firefox, alternatives would include the cURL command line tool (http://curl.haxx.se/)
or a standalone application (http://jamescrisp.org/2008/08/08/simple-rest-client/). Add-ons for
other browsers may also exist.

__2. If you do not already have Mozilla Firefox installed, go to http://www.mozilla.com/firefox/,
download version 3.5 or 3.6 and follow the installation instructions.

__3. Start Mozilla Firefox, go to this page (https://addons.mozilla.org/firefox/addon/9780/), click the
Add to Firefox button and follow the instructions, including the restart of Mozilla Firefox.

1.4 Test the REST Client Setup

__1. Start your Jazz Team Server. For a default installation, the public URI (root of all the URLs) used
in later steps will be: https://localhost:9443/jazz

__a. In the Windows Explorer, navigate to the C:\RTC2002Dev\jazz\server folder.

__b. Double click the server.startup.bat file to start the server.

__2. Open Mozilla Firefox and, from the menu bar, select Tools > REST Client. It will open a new
REST Client for Firefox tab.

IBM Software

Page 10 [Asset Title. Change font to black]

__3. Select the GET method from the combo-box and type the URL:
https://localhost:9443/jazz/rootservices and then press Send. The Response Header should
show in green that the Status Code is “200 OK”.

IBM Software

Appendix Page 11

__4. Switch to the Response Body with Syntax Highlight tab to see the content of the response. It
will be an XML stream describing the root services of your Jazz Team Server.

__5. If you have reached this step then it means that the add-on is functioning correctly.

1.5 Test the WTP and Tomcat Setup

__1. Create a Tomcat Server definition.

__a. For the OSLC Producer workshop you will use the Web Tool Platform and deploy your
code against the Apache Tomcat application server. You will test the configuration now.

__b. If the RTC client with WTP is not still running, start It now.

__c. Open the Java EE perspective.

IBM Software

Page 12 [Asset Title. Change font to black]

__d. From the menu bar select File > New > Other… then in the New wizard, type server in
the filter, select Server from the list and then click Next.

__e. On the second page of the wizard, expand the Apache tree, select Tomcat v5.5 Server
and then click Next.

IBM Software

Appendix Page 13

__f. On the final page of the wizard, specify where you have unzipped Tomcat (use the
Browse… button) and press Finish.

If you already have installed Tomcat in the Eclipse workspace then this
wizard page will not show up.

__g. A project (named Servers) is created to contain your server definitions. It is visible in the
Project Explorer view. The project contains a set of property files which will be used when
run your servlets on the Tomcat server.

IBM Software

Page 14 [Asset Title. Change font to black]

__2. Create a new web project to run on the Tomcat server.

__a. Right click in empty space in the Project Explorer view, then select New > Dynamic Web
Project.

__b. In the Dynamic Web Project wizard, type HelloWorldServlet into the Project name
field and click Finish.

IBM Software

Appendix Page 15

__c. A web project is created in the Project Explorer.

__3. Create the default page for the web project.

__a. Right click the WebContent folder and then select New > JSP.

IBM Software

Page 16 [Asset Title. Change font to black]

__b. In the New Java Server Page wizard, type index.jsp into the File name field and then
click Next.

__c. In the second page of the wizard, New JSP File (xhtml) and click Finish.

IBM Software

Appendix Page 17

__d. A file named index.jsp will be created under the WebContent folder and an editor will
open for this new file.

__e. Within the <body> element, type the following HTML.

Hello World from JSP, it is <%= new Date().toString() %>

__f. If after typing Date, you use code assist (Ctrl+Space), a list of possible classes will be
presented. Select java.util.date from the list and the import of that class will be
automatically added to your file as shown here.

__g. Save your changes (Ctrl+S).

IBM Software

Page 18 [Asset Title. Change font to black]

__4. Run the web project on the Tomcat server.

__a. In the Project Explorer view, right click the HelloWorldServlet project then select
Run As > Run on Server from the menu.

__b. In the Run On Server wizard select your Tomcat server and press Next.

IBM Software

Appendix Page 19

__c. On the second page verify that your servlet has been correctly added to the Configured
projects list and then click Finish.

__d. Soon, the Servers view will show that the server has started…

IBM Software

Page 20 [Asset Title. Change font to black]

__e. The Console view will display some info about the running server...

__f. The Eclipse internal Web Browser view will open on the the URL of your servlet and
display your JSP with the current timestamp.

__5. If you have reached this last step, it means that your Tomcat is correctly set up and the WTP
features are properly installed. You can close the browser and any open editors. Shutdown the
Tomcat server from the Servers view by clicking the Stop the Server icon.

IBM Software

Appendix Page 21

1.6 Setup for the Remaining Labs

__1. The ExtensionsAndIntegrationsLabCodeRepository-yyyymmdd.tar file you have contains an
RTC repository. The repository has one project area, stream and workspace for this workshop (it
may also contain artifacts for other workshops). The stream and workspace contain two
components: one for the OSLC consumer labs and one for the OSLC provider labs. Right now,
you are going to import this repository into the Tomcat server’s database. In subsequent labs,
you will connect to the project area from the RTC Eclipse workspace you have configured in this
lab to obtain the code.

__a. From the Windows Explorer, copy the tar file to the C:\RTC2002Dev\jazz\server folder.

__b. Make sure the server is stopped. If it is not, double click the server.shutdown.bat file to
stop the server.

__c. Open a command prompt in the C:\RTC2002Dev\jazz\server folder.

__d. Type the command repotools -import fromFile=

ExtensionsAndIntegrationsLabCodeRepository-yyyymmdd.tar and then hit

enter. Replace yyyymmdd with the actual date stamp in the file name.

__e. Type the command repotools -rebuildTextIndices and then hit enter.

__f. If you are continuing on to lab 2 right now, double click the server.startup.bat file to start
the server.

You have completed lab 1. You now have a complete development
environment for OSLC consumers and providers.

IBM Software

Page 22 [Asset Title. Change font to black]

Lab 2 An introduction to the OSLC APIs

Lab Scenario

You will learn how to retrieve and use some default OSLC API directly
from your favorite web browser.

If your RTC server is not running, start it now
(C:\RTC2002Dev\jazz\server\server.startup.bat).

2.1 The Root Services document

__1. Open the Mozilla Firefox internet browser by double-clicking the Mozilla Firefox shortcut

 on the Windows Desktop.

__2. Enter the URL: https://localhost:9443/jazz/rootservices
This URL will return the Root Services document which is an XML informational resource that
lists a set of REST services and capabilities.

IBM Software

Appendix Page 23

Root Services

The Root Services URL locates a REST API for discovering the
Jazz Team Server's various services and specific capabilities, such
as a way to discover a web UI presentation for particular kinds of
resources.

This Service is an open-ended mechanism that can be used to
keep track of and share important information about the Jazz Team
Server. There are backstage mechanisms for the various services
to register their important information with the Discovery Service.

The Discovery Service is also used by all services to discover the
whereabouts of other services provided by the other tools affiliated with
this JTS (Jazz Team Server).

__3. One of these services is the “whoiam” service.
Look for a tag named jfs:currentUser. The URL associated to the unique attribute rdf:resource
is the URL to access to the “whoiam” service.

__4. Copy this URL (https://localhost:9443/jazz/whoami) and paste it into the navigation field of your
web browser and press Enter.

IBM Software

Page 24 [Asset Title. Change font to black]

Login / Protected resources

During the following lab examples, you might face a situation
where you get a 200 OK status code but not the expected result:

In this case, please check out if the HTTP headers you got doesn’t
have a key/value field set to

X-com-ibm-team-repository-web-auth-msg: authrequired

Then it means that you try to access to a protected resource and you
need to login first.

In such case, follow these steps to fix this issue:

1. Open a new tab on your current web browser

2. Login to the server entering the following URL in your navigation

field: https://localhost:9443/jazz/web
The login dialog Web UI will show up:

3. Login with ADMIN as both User ID and Password

4. Once you are logged, switch back to the REST client and retry to
run the described sample. It should work as expected.

IBM Software

Appendix Page 25

__5. The REST service provides a single resource that returns the URL of a user resource that
corresponds to the currently logged on user:

__a. Copy this URL and paste it in the navigation field of your web browser to directly access
the user resource.

Because we didn’t mention the format we would like to access this resource with, the Jazz
Team Server redirected us to the User Editor.

IBM Software

Page 26 [Asset Title. Change font to black]

2.2 The REST Client add-on

REST Client add-on

To be able to properly handle the response of a REST service, we need
to use a REST client application which will let us specify all of the
parameters required for an HTTP method.

There are several REST clients available on the web. We have chosen to
pick up one which can be installed directly on a Firefox web browser.

This REST client is a Firefox add-on named “REST Client”

(https://addons.mozilla.org/en-US/firefox/addon/9780).

__1. From the Tools menu of your web browser, select the item REST client to open the REST client
UI.

This action opens a new tab of the web browser titled REST Client.

IBM Software

Appendix Page 27

__2. Now we should be able to specify the correct parameters to access the XML representation of
the user resource.

__a. Choose the GET method from the Method combo-box

__b. In the URL field, copy/paste the URL of the current user that the “whoiam” service has
revealed to you (i.e. https://localhost:9443/jazz/users/ADMIN).

__c. Press the Add Request Header button and add the header key accept and the value

application/rdf+xml.

__d. Then press OK. At this moment the REST client UI should look like this:

IBM Software

Page 28 [Asset Title. Change font to black]

__3. Press the Send button. The REST service Response Header displays the headers of the HTTP
response:

If the Status Code has the value “200 OK” it means that the HTTP request was handled
properly. If not, please check out the URL and the header you have provided.

__4. Press the “Response Body with Syntax Highlight” tab to display the response body.

The
representation of a user resource is based on the Friend of a Friend (FOAF) RDF vocabulary
(http://xmlns.com/foaf/spec/).

2.3 OSLC services

Until now we were calling Jazz Foundation REST services which are specific to the Jazz Team Servers.
It is time now to call specifically the OSLC REST services implemented in the Jazz Team Server. The
specifications of these APIs are defined on the web site of the Open Services for Lifecycle Collaboration
community (http://open-services.net).

__1. From the Root Services document, extract the Change Management Catalog URL (pointed to by
rdf:resource) of the element oslc_cm:cmServiceProviders.

__2. Copy this URL (https://localhost:9443/jazz/oslc/workitems/catalog) and paste it into the URL field
of REST client.

IBM Software

Appendix Page 29

__3. If you already have any request header setup, select it then press the Del key to remove the
existing header.

__4. Press the Add Request Header button and add the header key accept with the value

application/x-oslc-disc-service-provider-catalog+xml.

__5. Then press OK. At this moment the Firefox REST client UI should look like thyis:

__6. Press the Send button. The REST service response header will be displayed at on bottom part
of the UI. If the Status Code doesn’t show the value “200 OK”, please check out the URL and the
header you have provided.

__7. Press the “Response Body with Syntax Highlight” tab to display the response body.

The resulting document contains a list of ServiceProvider elements that point to the documents
which contain the actual service descriptions.
In the case of RTC, there is one ServiceProvider element for each Project Area.
Typically, an application would use the title of this element to allow the user to choose between
the project areas.

IBM Software

Page 30 [Asset Title. Change font to black]

__8. Press the “Response Body” tab to display the response body source text.

__9. Retrieve the Service Provider element for the Extension and Integration Workshops Project
Area.

__10. Copy the URL associated to the attribute rdf:resource defined in the sub-element
oslc_disc:services.

__11. Paste the URL in the URL field of the REST client

__12. Replace the accept header by the following media-type:
application/x-oslc-cm-service-description+xml 1.

1
 The list of the Media Types available for the OSLC-CM is available at this link: http://open-

services.net/bin/view/Main/CmRestApiV1#Media_Types_Used

Media Type Resource

application/x-oslc-cm-change-
request+xml

Change Request Resource

application/x-oslc-cm-service-
description+xml

Service Descriptor Document

application/x-oslc-disc-service-
provider-catalog+xml

Service Provider Catalog

application/atom+xml Resource Collection

application/json General JSON format request/response

application/xml

text/xml

General XML format request/response

IBM Software

Appendix Page 31

__13. Press the Send button. The response body will display Service Provider document listing all the
REST services available for this Service Provider (alias Project Area):

� links to the dialog modules,

application/xhtml+xml XHTML presentation format for Change Request
Resource

text/html HTML presentation format for Change Request
Resource

IBM Software

Page 32 [Asset Title. Change font to black]

� link to the Change Request factory URL to create new work items

� and the REST service to query work items.

2.4 Search for some Work Items

In this paragraph, we will describe how we can query Work Items using the corresponding OSLC REST
service.

1. From the Service Provider services document, look for the oslc_cm:url element into the
oslc_cm:simpleQuery element.

2. Copy this URL, also named Simple Query URL) and paste it into your REST client.

IBM Software

Appendix Page 33

3. Set the Accept header with the value application/x-oslc-cm-change-request+xml.

4. Now, if you press the Send button, the response body will display ALL the work items (Change
Request elements) listed in the corresponding Project Area.

5. Actually, this REST service offers the possibility to filter the work items you are looking for and,
for the selected work items, to specify which attributes you are interested in. First let try to retrieve
all the work items which contain the word “build” in it.
To do so, complete the Simple Query URL with the following parameter:

 ?oslc_cm.query=oslc_cm:searchTerms="build"

So the URL should look like this:
https://localhost:9443/jazz/oslc/contexts/_68EfMFErEd-SYLn-
ohNPpg/workitems?oslc_cm.query=oslc_cm:searchTerms="build" :

IBM Software

Page 34 [Asset Title. Change font to black]

6. Press the Send button. the response body will display a subset of work items:

7. With this OSLC service, it is also possible to specify the subset of attributes you want to fetch
from the server. For example, let say you are only interested in the work item ID (dc:identifier)
and the work item title (dc:title). In this case, complete the previous URL with the following
expression:

 &oslc_cm.properties=dc:identifier,dc:title

8. Press the Send button. The REST client will only display the requested attributes:

You might have noticed that the last query did return only the requested
attributes, it also returned the oslc_cm:score attribute.

When oslc_cm:searchTerms is used in the request, each entry (hit) in the
response contains a oslc_cm:score property which is a non-negative
number and in the range from 0-100. This score should help to order the
entries based on the largest oslc_cm:score.

Conclusion

You have completed lab 3. You now have an initial understanding of the
OSLC APIs.

In the next lab you will learn how to programmatically access this API.

IBM Software

Appendix Page 35

Lab 3 Access OSLC APIs programmatically

Lab Scenario

You will learn how to access OSLC APIs programmatically and you will
build your first OSLC Consumer.

If your RTC server is not running, start it now
(C:\RTC2002Dev\jazz\server\server.startup.bat).

If your RTC development environment is not open, navigate to
C:\RTC2002Dev\jazz\client\eclipse in the Windows explorer and
double click eclipse.exe. If prompted to select an Eclipse workspace,
create a new one that you should name OSLC-Consumer. If you are in a
classroom environment where lab one was done for you, select the
Eclipse workspace as directed by your instructor.

3.1 Loading Examples

__1. If the Java perspective is not open, open it now by selecting Window > Open Perspective >
Other… > Java from the menu bar.

__2. Load the lab code.

__a. On the left, switch to the Team Artifacts view and click the Accept Team Invitation link.

__b. In the Accept Team Invitation wizard, enter the following in the text field and then click
Finish.

teamRepository=https://localhost:9443/jazz
userId=ADMIN
userName=ADMIN
projectAreaName=Extension and Integration Workshops

IBM Software

Page 36 [Asset Title. Change font to black]

__c. When prompted for a password, enter ADMIN. Also, check the Save password and
Automatically log in check boxes. Then click OK.

__d. If prompted with a Repository Connection Certificate Problem, select the Accept this
certificate permanently radio button and then click OK.

__e. Close the project area editor that opens.

__f. In the Team Artifacts view, expand the My Repository Workspaces node, expand the
OSLC Workshop Workspace, right click on the OSLC Consumer Lab Code component
and then select the Load… action from then context menu.

IBM Software

Appendix Page 37

In the Load Repository Workspace wizard, click Finish.

__g. Verify that there are now at least 2 Eclipse projects in your Package Explorer view. These
projects contain the code for the OSLC consumer lab. In this lab we will mainly work with
the net.jazz.oslc.consumer.cm.client Eclipse project. This project contains a set

of samples we will explain and run during this lab.
The other project org.apache.http contains the jars of the Apache HTTP Client

(Release 4.0.1) framework that we will use to the reach the REST API.

Apache HTTP Client

All our examples are based on Apache HTTP Client 4.0.1 API.
This is not a prerequisite. Feel free to adopt the HTTP Client framework
you prefer. We found this framework pretty convenient for our own needs.

IBM Software

Page 38 [Asset Title. Change font to black]

3.2 Accessing to the Root Services document

This first example describes how to fetch the content of a URL, and more particularly, how to fetch the
Root Services document using the Apache HTTP Client API.

__1. In the Package Explorer view, expand the src/net.jazz.oslc.consumer.examples source
package of the net.jazz.oslc.consumer.cm.client Eclipse project and then double click the
Example01.java file. The following snippet of code is extracted from the main method.

// Setup the HttClient

HttpClient httpclient = new DefaultHttpClient();

// Disabling SSL Certificate Validation

HttpUtils.setupLazySSLSupport(httpclient);

// Setup the HTTP GET method

HttpGet httpget = new HttpGet("https://localhost:9443/jazz/rootservices");

HttpResponse response;

try {

 // Execute the request

 response = httpclient.execute(httpget);

 System.out.println(">> HTTP Status code: " + response.getStatusLine());

 if (response.getStatusLine().getStatusCode() == 200) {

 System.out.println(">> HTTP Response Headers: ");

 HttpUtils.printResponseHeaders(response);

 System.out.println(">> HTTP Response Body: ");

 HttpUtils.printResponseBody(response);

 } else {

 // Release allocated resources

 response.getEntity().consumeContent();

 }

} catch (ClientProtocolException e) {

 e.printStackTrace();

} catch (IOException e) {

 e.printStackTrace();

} finally {

 // Shutdown the HTTP connection

 httpclient.getConnectionManager().shutdown();

}

IBM Software

Appendix Page 39

__2. To get access to the Apache HTTP Client API, for executing an HTTP method, we need to
create an instance of org.apache.http.impl.client.DefaultHttpClient:

// Setup the HttClient

HttpClient httpclient = new DefaultHttpClient();

__3. The Jazz Team Server uses the SSL (Secure Socket Layer) protocol. If we try to access any
HTTPS URL, we will get an SSL certificate exception. It is for this reason that the client needs to
specify how he wants to handle the certificates.
For the purpose of the demo, we have defined some code which disables the certificate
validation by overwriting the default behavior to trust any certificate.

// Disabling SSL Certificate Validation

HttpUtils.setupLazySSLSupport(httpclient);

This behavior is implemented by the HttpUtils.setupLazySSLSupport static method.

__4. The next line creates an instance of org.apache.http.client.methods.HttpGet which reifines the
call to the HTTP GET method. The call is initialized with the URI of the Root Services document.

// Setup the HTTP GET method

HttpGet httpget = new HttpGet("https://localhost:9443/jazz/rootservices");

__5. The next line sends/executes the GET. The response of the http method is returned in an
instance of org.apache.http.HttpResponse.

// Execute the request

HttpResponse response = httpclient.execute(httpget);

__6. The next line prints out the status code of the HTTP response

 System.out.println(">> HTTP Status code: " + response.getStatusLine());

__7. If the response is OK (status code = 200) then the code prints the response headers
(HttpUtils.printResponseHeaders) and the response body (HttpUtils.printResponseBody).

System.out.println(">> HTTP Response Headers: ");

HttpUtils.printResponseHeaders(response);

System.out.println(">> HTTP Response Body: ");

HttpUtils.printResponseBody(response);

__8. If the response is an error then the code releases any created resources:

// Release allocated resources

response.getEntity().consumeContent();

__9. Finally, the last line shuts down the HTTP client by releasing the connections.

// Shutdown the HTTP connection

httpclient.getConnectionManager().shutdown();

IBM Software

Page 40 [Asset Title. Change font to black]

__10. Now that we have a good understanding of the code, lets run it.

__a. Select the Example01.java file in the Package Explorer:

__b. Press the Run as… button located on toolbar

__c. Select run the example as a Java Application and press OK.

IBM Software

Appendix Page 41

__d. The Console view will appear in the bottom part of the workbench displaying the example
print out.

The log should looklike this:

>> Example01: Accessing Root Services document with HttpClient

 - Root Services URI: https://localhost:9443/jazz/rootservices

>> HTTP Status code: HTTP/1.1 200 OK

>> HTTP Response Headers:

 - Server: Apache-Coyote/1.1

 - Cache-Control: private

 - Expires: Tue, 08 Jun 2010 00:00:00 CEST

 - Last-Modified: Sat, 08 May 2010 15:43:01 CEST

 - Content-Type: application/rdf+xml;charset=UTF-8

 - Transfer-Encoding: chunked

 - Date: Sat, 08 May 2010 15:04:03 GMT

>> HTTP Response Body:

<?xml version="1.0"?>

<rdf:Description

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/terms/"

 xmlns:jfs="http://jazz.net/xmlns/prod/jazz/jfs/1.0/"

 xmlns:jd="http://jazz.net/xmlns/prod/jazz/discovery/1.0/"

 xmlns:jp06="http://jazz.net/xmlns/prod/jazz/process/0.6/"

 rdf:about="https://localhost:9443/jazz/rootservices">

…

</rdf:Description>

IBM Software

Page 42 [Asset Title. Change font to black]

3.3 Retrieve the Service Provider catalog using XPath

This new example shows how an OSLC consumer can retrieve an element or an attribute of an element
in an XML representation, such the Root Services document.

Actually, this example uses the XPath language to retrieve the Service Provider catalog listed by the
attribute rdf:resource of the element oslc_cm:cmServiceProviders.

The W3C XPath language (http://www.w3.org/TR/xpath/) has been defined for querying XML documents
to select any node (element or attribute) or list of nodes. Here are few XPath expression examples:

Expression Description

foo Selects all the child nodes named foo.

/foo Selects from the root node the nodes named foo.

//foo Selects nodes named foo no matter where they are in the
document

@att Selects the attribute node named att.

foo/bar Selects all the nodes named bar having a parent node
named foo.

//foo[@att] Select all the nodes named foo no matter where they are
having an attribute named att.

//foo [@att="val”] Select all the nodes named foo no matter where they are
having an attribute named att with the value val.

For example, knowing that the Root Services document has the following tag structure:

<?xml version="1.0"?>

<rdf:Description …>

…/…

 <!-- Change Management service catalog -->

 <oslc_cm:cmServiceProviders

 xmlns:oslc_cm="http://open-services.net/xmlns/cm/1.0/"

 rdf:resource="https://localhost:9443/jazz/oslc/workitems/catalog" />

…/…

</rdf:Description>

The XPath expression to retrieve the node defining the Service Provider catalog will be:

/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource

This expression means: “Select the attribute node named rdf:resource from the element node

named oslc_cm:cmServiceProviders, child of the element named rdf:Description.”

Let see the code for the next example now…

IBM Software

Appendix Page 43

__1. In the Package Explorer view, open the Example02.java file and look at the main method:

// Define the XPath evaluation environment for RTC XML documents

XPath xpath = HttpUtils.getRTCXPath();

// Parse the response body

InputSource source = new InputSource(response.getEntity().getContent());

Node attribute = (Node) (xpath.evaluate(

 "/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource",

 source, XPathConstants.NODE));

// Print out the Service Provider catalog URI

System.out.println(">> Catalog URI: " + attribute.getTextContent());

__2. The first line creates an instance of an XPath evaluation environment. This environment is set up
to be able to parse and understand nodes using RTC namespaces.

// Define the XPath evaluation environment for RTC XML documents

XPath xpath = HttpUtils.getRTCXPath();

The getRTCXPath method is implemented in the HttpUtils class. It mainly consists of mapping
the name space ID to their corresponding URL.

__3. The next lines parse the response body (response.getEntity().getContent()) using the
XPath.evaluate method. This method takes 3 arguments:

// Parse the response body

InputSource source = new InputSource(response.getEntity().getContent());

Node attribute = (Node) (xpath.evaluate(

 "/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource",

 source, XPathConstants.NODE));

__a. The XPath expression to evaluate, describing the node(s) to select. In the example code,
we provide the XPath to retrieve the URI of the Service Provider catalog:

"/rdf:Description/oslc_cm:cmServiceProviders/@rdf:resource"

__b. The source to parse.

This source can be either an org.xml.sax.InputSource or directly a

DOM structure like an org.w3c.dom.Document or an

org.w3c.dom.Element.

If you know that you will have to parse the same document several times,
we recommend creating the DOM structure using your favorite SAX
parser then reuse the DOM document each time you need it.

__c.

IBM Software

Page 44 [Asset Title. Change font to black]

__d. The expected return type.

This return type can take 2 values:

� XPathConstants.NODE then the method will return the first

Node found.

� XPathConstants.NODESET then the method will return a

NodeList of all the nodes found.

 In the example code, we are looking for the first attribute found.

__4. The last line prints out the value associated the found attribute. This value should be the Service
Provider catalog URI:

// Print out the Service Provider catalog URI

System.out.println(">> Catalog URI: " + attribute.getTextContent());

__5. Now that we have a good understanding of the code, lets run it.

__a. Select the Example02.java file in the Package Explorer:

__b. Run the sample as a Java application

__c. The Console view will print out the catalog URI:.

3.4 Jazz Form-based Authentification

In the next example we will see how to authenticate and pass the Jazz Team Server (JTS) security
mechanisms defined by the foundation core services. Then we should be able to reach any protected
document like the Service Provider catalog document.

This example prints out the titles of each Service Provider (alias Project Area) stored in the JTS we are
connected to.

Contrary to the Root Services document, the Service Provider catalog document is a protected
document, so the client needs to authenticate with the JTS to be able to access it.

JTS uses a Form-Based Authentication. This authentication has to go thru three steps:

IBM Software

Appendix Page 45

__1. The client requests a protected resource.

__2. If the client is not authenticated, the server responds a redirect to the login page, and the client
has to fill the form and submit it to the server.

__3. If the login has succeeded, the client submits a request the protected resource again and should
get it back.

This behavior is implemented by the sendGetForSecureDocument method stored in the HttpUtils class.
If you don’t want to dig into this implementation, feel free to directly skip to step (7).

__4. In the Package Explorer view, open the HttpUtils.java file and scroll to the
sendGetForSecureDocument method. To simplify the code, we have removed all the printouts
from the snipped code.

 HttpGet documentGet = new HttpGet(protectedResource);

 documentGet.addHeader("accept", mediaType);

 // Step (1): Request the protected resource
 HttpResponse documentResponse = httpClient.execute(documentGet);

 if (documentResponse.getStatusLine().getStatusCode() == 200) {

 Header header = documentResponse.getFirstHeader(

 "x-com-ibm-team-repository-web-auth-msg");

 if ((header!=null) && ("authrequired".equals(header.getValue()))) {

 documentResponse.getEntity().consumeContent();

 // The server requires an authentication: Create the login form

 HttpPost formPost = new HttpPost(serverURI+"/j_security_check");

 List<NameValuePair> nvps = new ArrayList<NameValuePair>();

 nvps.add(new BasicNameValuePair("j_username", login));

 nvps.add(new BasicNameValuePair("j_password", password));

 formPost.setEntity(new UrlEncodedFormEntity(nvps, HTTP.UTF_8));

IBM Software

Page 46 [Asset Title. Change font to black]

 // Step (2): The client submits the login form
 HttpResponse formResponse = httpClient.execute(formPost);

 header = formResponse.getFirstHeader(AUTHREQUIRED);

 if ((header!=null) && ("authfailed".equals(header.getValue()))) {

 // The login failed

 throw new InvalidCredentialsException("Authentication failed");

 } else {

 formResponse.getEntity().consumeContent();

 // The login succeed

 // Step (3): Request again the protected resource

 HttpGet documentGet2 = new HttpGet(protectedResource);

 documentGet2.addHeader("accept", mediaType);

 return httpClient.execute(documentGet2);

 }

 }

 }

 return documentResponse;

__5. For the first step, as for any other document, the client tries to reach the document:

HttpGet documentGet = new HttpGet(protectedResource);

documentGet.addHeader("accept", mediaType);

// Step (1): Request the protected resource

HttpResponse documentResponse = httpClient.execute(documentGet);

__6. If the request didn’t return any error, the client checks out if an authentication is required. This
check will consist in verifying the presence of the x-com-ibm-team-repository-web-auth-

msg HTTP response header.

If the value of this header is authrequired then the client must submit a form-based login

(https://jazz.net/wiki/bin/view/Main/JFSCoreSecurity#User_Authentication).
if the authentication is not required, the client returns the HTTP response.

if (documentResponse.getStatusLine().getStatusCode() == 200) {

 Header header

 = documentResponse.getFirstHeader("x-com-ibm-team-repository-web-auth-msg");

 if ((header!=null) && ("authrequired".equals(header.getValue()))) {

 …

 } else {

 return documentResponse;

 }

__7. The next step consists of filling in and POSTing the authentication form:

 // The server requires an authentication: Create the login form

 HttpPost formPost = new HttpPost(serverURI+"/j_security_check");

 List<NameValuePair> nvps = new ArrayList<NameValuePair>();

 nvps.add(new BasicNameValuePair("j_username", login));

IBM Software

Appendix Page 47

 nvps.add(new BasicNameValuePair("j_password", password));

 formPost.setEntity(new UrlEncodedFormEntity(nvps, HTTP.UTF_8));

 // Step (2): The client submits the login form

 HttpResponse formResponse = httpClient.execute(formPost);

__8. Then the client needs to check out the result of the login. If the login failed then the client should
throw an exception:

 header = formResponse.getFirstHeader("x-com-ibm-team-repository-web-auth-msg ");

 if ((header!=null) && ("authfailed".equals(header.getValue()))) {

 // The login failed

 throw new InvalidCredentialsException("Authentication failed");

 }

__9. If the login didn’t fail, then the client can request the protected document a second time, and
should receive the expected response:

 // Step (3): Request again the protected resource

 HttpGet documentGet2 = new HttpGet(protectedResource);

 documentGet.addHeader("accept", mediaType);

 return httpClient.execute(documentGet2);

At this point, we should be able to understand the third example.

__10. In the Package Explorer view, open the Example03.java file and look at the main method:

// Access to the Service Provider catalog

HttpResponse catalogResponse

 = HttpUtils.sendGetForSecureDocument(

 server, serviceProvidersCatalog,

 "application/x-oslc-disc-service-provider-catalog+xml",

 login, password, httpclient);

if (catalogResponse.getStatusLine().getStatusCode() == 200) {

 source = new InputSource(catalogResponse.getEntity().getContent());

 NodeList titleNodes = (NodeList) (xpath.evaluate(

 serviceProviderTitleXPath,

 source, XPathConstants.NODESET));

 // Print out the title of each Service Provider

 int length = titleNodes.getLength();

 System.out.println(">> Project Areas:");

 for (int i = 0; i < length; i++) {

 System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());

 }

}

IBM Software

Page 48 [Asset Title. Change font to black]

__a. Once the client has retrieved the URI of the Service Provider catalog
(serviceProvidersCatalog), it can fetch the catalog.

Because the catalog is a protected document, the client uses the Form Based
authentication code we have previously described. The associated Media Type is
application/x-oslc-disc-service-provider-catalog+xml 2.

// Access to the Service Provider catalog

HttpResponse catalogResponse

 = HttpUtils.sendGetForSecureDocument(

 server, serviceProvidersCatalog,

 "application/x-oslc-disc-service-provider-catalog+xml",

 login, password, httpclient);

__b. If the server didn’t return an error, then the client can parse the response body and extract
from the Service Provider catalog document the title nodes of each Service Provider (alias
Project Area) and print out the Service Provider title:

source = new InputSource(catalogResponse.getEntity().getContent());

NodeList titleNodes = (NodeList) (xpath.evaluate("//oslc_disc:ServiceProvider/dc:title",

 source, XPathConstants.NODESET));

// Print out the title of each Service Provider

int length = titleNodes.getLength();

System.out.println(">> Project Areas:");

for (int i = 0; i < length; i++) {

 System.out.println(">> \t - "+ titleNodes.item(i).getTextContent());

}

The developer knows that the Service Provider catalog document has the following
structure:

<?xml version="1.0" encoding="UTF-8"?>

<oslc_disc:ServiceProviderCatalog …>

 <dc:title>Project Areas</dc:title>

 <oslc_disc:entry>

 <oslc_disc:ServiceProvider>

 <dc:title>Extension and Integration Workshops</dc:title>

 <oslc_disc:details rdf:resource="…"/>

 <oslc_disc:services rdf:resource="…/workitems/services.xml"/>

 <jp:consumerRegistry rdf:resource="…/links"/>

 </oslc_disc:ServiceProvider>

 </oslc_disc:entry>

</oslc_disc:ServiceProviderCatalog>

Therefore the XPath expression to retrieve the dc:title nodes of the Service Provider
could be:

/oslc_disc:ServiceProviderCatalog/oslc_disc:entry/oslc_disc:ServiceProvider/dc:title

2
 http://open-services.net/bin/view/Main/CmRestApiV1#Media_Types_Used

IBM Software

Appendix Page 49

We could also simplify this expression with the following XPath expression:

//oslc_disc:ServiceProvider/dc:title

This expression means: select all the oslc_disc:ServiceProvider nodes, no matter

where they are, then select their dc:title child node. In this particular case, we could
even simplify to the following XPath expression:

//dc:title

Actually, the above expression means: select all the dc:title nodes no matter where

they are.

__11. Now that we have a good understanding of the code, lets run it.

__a. Select the Example03.java file in the Package Explorer:

__b. Run it as Java application.

__c. The Console view will print out the titles of the Project Areas currently stored in the Jazz
Team Server:.

3.5 Work Item update

This last example describes how to retrieve an existing Change Request (alias Work Item), modify it and
store it back in the server.

__1. In the Package Explorer view, open the Example04.java file and scroll to the run method. To
simplify the reading of the code, we have split the code into a set of methods describing all of the
steps to retrieve a Change Request, fetch it, modify it, and finally store it back.

IBM Software

Page 50 [Asset Title. Change font to black]

// Step (1) : Retrieve the Service Provider catalog
String catalogURI = getServiceProviderCatalog();

System.out.println(">> Service Provider Catalog: "+catalogURI);

// Step (2) : Retrieve the designated Service Provider (Project Area)

String paName = "Extension and Integration Workshops";

String projectAreaURI = getServiceProvider(catalogURI, paName);

System.out.println(">> Project Area ["+paName+"]: "+projectAreaURI);

// Step (3) : Retrieve the Change Request Simple Query for the current Service Provider

String simpleQueryURI = getSimpleQueryURI(projectAreaURI);

System.out.println(">> Simple Query URL: "+simpleQueryURI);

// Step (4) : Retrieve the designated Change Request (Work Item)
String wiID = "1";

ChangeRequest cr = getChangeRequest(simpleQueryURI, wiID);

System.out.println(">> Change Request URL for ["+wiID+"]: "+cr.getUri());

// Step (5) : Apply modification to the current Change Request
cr.setDcDescription(cr.getDcDescription()+" – " + new Date().toString());

// Step (6) : Update the Change Request on the server

HttpResponse response = updateChangeRequest(cr);

// Step (7) : Print out the HTTP PUT method response

System.out.println(">> Update Response Status code:" + response.getStatusLine());

System.out.println(">> Update Response Headers:");

HttpUtils.printResponseHeaders(response);

System.out.println(">> Update Response Body:");

HttpUtils.printResponseBody(response);

__2. Step (4): We will not spend time on 3 first steps which have been explained during the previous
examples. The step (4) is interesting because the code not only fetches a Change Request
resource but it also maps the XML representation to a Java Object representation, which is an
instance of the net.jazz.oslc.cm.datamodel.ChangeRequest.

__a. Actually, this method queries the designated Change Request, fetching only the subset of
properties supported by the ChangeRequest implementation (dc:title, dc:identifier, dc:type,
dc:description, dc:subject, dc:creator, dc:modified):

// Build the query requesting a change request with a specific dc:identifier

// Fetch only a subset of its properties

String queryWIs

 = simpleQueryURI

 +"?oslc_cm.query="

 +URLEncoder.encode("dc:identifier=\""+wiID+"\"", HTTP.UTF_8)

 +"&oslc_cm.properties="

 +"dc:title,dc:identifier,dc:type,dc:description, dc:subject,dc:creator,dc:modified";

IBM Software

Appendix Page 51

HttpResponse response = HttpUtils.sendGetForSecureDocument(

 server, queryWIs, "application/xml",

 login, password, httpclient);

__b. Then the client extracts from the HTTP response the org.w3c.dom.Node representing
the Change Request

// Extract the Change Request DOM node

String wiXPath = "//oslc_cm:ChangeRequest";

InputSource source = new InputSource(response.getEntity().getContent());

Element wiNode = (Element)(xpath.evaluate(wiXPath, source, XPathConstants.NODE));

__c. Finally, the client instantiates a new Change Request based on the content of the Node,
and returns the resulting ChangeRequest instance.

// Create the corresponding ChangeRequest instance

String wiURI = wiNode.getAttribute("rdf:resource");

return new ChangeRequest(wiURI, wiNode);

__3. Step (5): During this step, the client modifies the Change Request using the provided API.
Actually, it concatenates the current timestamp at the end of the description.

// Step (5) : Apply modification to the current Change Request

cr.setDcDescription(cr.getDcDescription()+" – " + new Date().toString());

__4. Step (6): In this step, the client uses the Update Change Request OSLC-CM API to update the
modified Change Request. This API is described by the specs like this (Change Management
REST API - Update a change request):

Which means that to update the Change Request, the client needs to send an HTTP PUT
message with the Change Request URI, the content-type header must be set to

application/x-oslc-cm-change-request+xml and the request’s body must contain the

XML representation of the modified Change Request.

IBM Software

Page 52 [Asset Title. Change font to black]

This behavior is implemented by the.updateChangeRequest:

// How to fill the request body (Content Producer)

ContentProducer cp = new ContentProducer() {

 public void writeTo(OutputStream outstream) throws IOException {

 Writer writer = new OutputStreamWriter(outstream, HTTP.UTF_8);

 cr.writeXML(writer);

 writer.flush();

 }

};

// Call the PUT method against the Change Request URI

return HttpUtils.sendPutForSecureDocument(

 server, cr.getUri(),

 cp, "application/x-oslc-cm-change-request+xml",

 login, password, httpclient);

If you dig into the HttpUtils.sendPutForSecureDocument method, you will notice that this

method implements the same form-based authentification pattern as for the
sendGetForSecureDocument method previously described.

__5. Step (7): This step prints out the response of the HTTP PUT. So, let run the example and check
out the results.

__a. Select the Example04.java file in the Package Explorer:

__b. Run the example as a Java application.

__c. The Console view should provide the following output:

Don’t be surprised by the Status Line - 204 No Content - and the empty response body. Actually,
based on the specs, we should expect a status line set to “200 OK” and a response body with
the update Change Request. This issue has been identified and fixed in the release 3.0 M5:
Work Item #108069.

__6. Copy the URL of the Work Item from the Console view. It should located after the label: Change
Request URL for [1].

IBM Software

Appendix Page 53

__7. Open the Firefox internet browser by double-clicking the Mozilla Firefox shortcut on the
Windows Desktop.

__8. Paste the copied URL into the navigation field of your browser and Press Enter.

__9. If you were not already logged in, the web UI will display the login dialog.
Login with ADMIN as both User ID and Password.

__10. After the login, the Work Item WebUI editor will appear and you should be able to check out that
the description has been changed with a timestamp at the end:

IBM Software

Page 54 [Asset Title. Change font to black]

Conclusion

This last example concludes our two labs on how consuming
OSLC-CM API. We hope this will help you feel more comfortable
with the basics of OSLC, and encourage you to look at some of the
advanced features.

Don’t hesitate to join the http://open-services.net community and
follow the different specification activities…

IBM Software

Appendix Page 55

Lab 4 Implementing the OSLC APIs in a service provider

Lab Scenario

You have an assignment to extend an OSLC service provider to have
additional capabilities. You will learn how to modify the OSLC provider
implementation to provide additional dialogs and capabilities

If you have not done the setup, see OSLC Lab 1, “Setting up for OSLC
Development”.

It is recommended that you complete OSLC Lab 2, “An introduction to the
OSLC APIs” prior to this lab.

In order to complete and get the most out of this workshop, it is
recommended that you are already familiar with RTC as a user. Of
particular help would be familiarity with work items. In addition, you should
have basic familiarity with Java programming and debugging using
Eclipse. Note that OSLC can be used from any programming language
that can invoke or provide web services and not just Java; however, the
examples in this workshop are written in Java.

4.1 Loading Examples

__1. If the Java perspective is not open, open it now by selecting Window > Open Perspective >
Other… > Java from the menu bar.

__2. Load the lab code.

__a. On the left, switch to the Team Artifacts view and click the Accept Team Invitation link.

IBM Software

Page 56 [Asset Title. Change font to black]

__b. In the Accept Team Invitation wizard, enter the following in the text field and then click
Finish.

__c. When prompted for a password, enter ADMIN. Also, check the Save password and
Automatically log in check boxes. Then click OK.

__d. If prompted with a Repository Connection Certificate Problem, select the Accept this
certificate permanently radio button and then click OK.

__e. Close the project area editor that opens.

__f. In the Team Artifacts view, expand the My Repository Workspaces node, expand the
OSLC Workshop Workspace, right click on the OSLC Provider Lab Code component
and then select the Load… action from then context menu.

Leave the default selection option Find and load Eclipse projects

In the Load Repository Workspace wizard, click Finish.

teamRepository=https://localhost:9443/jazz
userId=ADMIN
userName=ADMIN
projectAreaName=Extension and Integration Workshops

IBM Software

Appendix Page 57

__g. Verify that there are now at least 2 Eclipse projects in your Package Explorer view. These
projects contain the code for the OSLC Provider Lab. In this lab we will mainly work with
the net.jazz.oslc.provider.cm.servlet Eclipse project. This project contains a
set of samples we will explain and run during this lab.

Apache Tomcat

All our examples are based on Java Servlet technology and use Apache
Tomcat Server as a test server. Other Java Servlet servers may be
appropriate

IBM Software

Page 58 [Asset Title. Change font to black]

4.2 Setting up the server runtime environment and running the sample
server

__3. In the Package Explorer, select the project name and then Run->Run As->Run on Server

IBM Software

Appendix Page 59

__4. Select Always use this server when running this project and leave all the other default
settings.

On the Run On Server dialog select Finish.
The launcher will attempt to load a webpage in the embedded browser, when prompted select
Cancel to download and close the embedded browser.

Restarting the sample server

This is a one time setup, for subsequent starts (or restarts) you will just
need to select Run on Server

__5. Open the Firefox internet browser by double-clicking the Mozilla Firefox shortcut on the
Windows Desktop.

IBM Software

Page 60 [Asset Title. Change font to black]

__6. Enter the URL: http://localhost:8080/oslc-sample/static/oslc.html
This URL will return a sample HTML OSLC-CM client consumer

4.3 Interacting with the sample provider

__1. Enter the Service URL: http://localhost:8080/oslc-sample and select Go!

This has discovered the
sample service provider document, used to enable the two buttons New Change Request and
Find Change Request

IBM Software

Appendix Page 61

HTML & Javascript sample

 This simple sample highlights service discovery and access to delegated
Web UI dialogs. It may be worth a few minutes to experiment with this.
Nothing actually gets created on the server or deleted, reloading the page
will reset to the beginning state.

4.4 Modifying the provider, adding another dialog

Making code changes

You will become familiar with how to make code changes and test the
changes. You will create a new entry in the service description document,
a new creation dialog and make it the default

__1. Locate the source code to change from the Package Explorer, namely the
ReferenceServiceDescriptionXMLWriter

IBM Software

Page 62 [Asset Title. Change font to black]

__2. Duplicate the function called writeCreationDialog and call the new function
writeCreationDialog2
Use whatever method that works best for you.

Coding best practices

This sample doesn’t focus on best practices to making
some of these changes. It would be recommended to
reuse the original method and refactor common aspects.

__3. Update the function writeChangeRequestDescription to add call to this new function

IBM Software

Appendix Page 63

__4. Update the writeCreationDialog function to remove setting the default attribute to true.

By doing this, the creation dialog entry in the service provider document will not longer be treated
as the default dialog to use.

__5. Update the writeCreationDialog2 function to provide updated names on various labels (shown
in green rectangles)

By leaving the setting of the attribute default to true, this will tell consumers to use this create
dialog as the default.
Save the changes and validate there are no compilation errors. If there are errors, investigate
the cause and repair

IBM Software

Page 64 [Asset Title. Change font to black]

4.5 Test changes

__1. Validate the server is still running

If the server is still running, no additional action is required. If the server is not running, see the
section in 4.2.

__2. Reload the sample OSLC-CM client

__3. Enter Service URL: http://localhost:8080/oslc-sample as before, selecting Go!.

IBM Software

Appendix Page 65

__4. Next select New Change Request from the sample page and observe the new dialog

Conclusion

You have completed lab 8. You now have an understanding of the OSLC-
CM sample provider, how to launch the sample provider server and
modify some of its source and seeing the results

IBM Software

Page 66 [Asset Title. Change font to black]

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have

IBM Software

Appendix Page 67

been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Software

Page 68 [Asset Title. Change font to black]

Appendix B. Trademarks and copyrights

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM Rational Jazz

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. See Java Guidelines

Apache Tomcat and Apache HttpComponents are trademarks of The Apache Software Foundation.

 Mozilla and Firefox are registered trademarks of the Mozilla Foundation.

Other company, product and service names may be trademarks or service marks of others.

NOTES

NOTES

© Copyright IBM Corporation 2010. All rights reserved.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without

warranty of any kind, express or implied. IBM shall not be

responsible for any damages arising out of the use of, or

otherwise related to, these materials. Nothing contained in

these materials is intended to, nor shall have the effect of,

creating any warranties or representations from IBM or its

suppliers or licensors, or altering the terms and conditions of

the applicable license agreement governing the use of IBM

software. References in these materials to IBM products,

programs, or services do not imply that they will be available in

all countries in which IBM operates. This information is based

on current IBM product plans and strategy, which are subject

to change by IBM without notice. Product release dates and/or

capabilities referenced in these materials may change at any

time at IBM’s sole discretion based on market opportunities or

other factors, and are not intended to be a commitment to

future product or feature availability in any way.

IBM, the IBM logo, and other IBM products and services are

trademarks of the International Business Machines

Corporation, in the United States, other countries or both.

Other company, product, or service names may be trademarks

or service marks of others.

IBM Software

© 2010 IBM Corporation

