
© 2009 IBM Corporation

IBM Rational Software

Jean-Yves Rigolet, IBM France Software Laboratory

Rational Team Concert for System z Scrum Master

rigolet.j@fr.ibm.com

Sou

nd

Atta

ched

Drinking our own champagne

Inside the concert of RTCz development

© 2009 IBM Corporation22

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Are we there yet?

Resources

Transforming our Software Delivery

© 2009 IBM Corporation3

HP

MSFT MKS

Tivoli

Rational

Other
Products

Goal:

To be for collaboration tools
what Visual Studio and Eclipse

are for the desktop

Technical requirements of a software delivery platform

• Learn from industry mistakes
– Don't assume that customers will only use your

products

– Don't assume that all data will be stored in a
central repository

• Take advantage of the Internet
– Amazingly scalable and extensible

– Integrates information on a massive scale

– Collaboration on an unprecedented scale

• Make it open and extensible
– Specify data independently of tools

– Standardize data access through HTTP/REST
standard protocols

3

© 2009 IBM Corporation4

Jazz is…

� Our vision of the future of systems
and software delivery

� A scalable, extensible team
collaboration platform

� An integration architecture enabling
mashups and non-Jazz products to
participate

� A community at Jazz.net where
Jazz products are built

� An evolution of our portfolio
over time

Jazz is a platform for transforming software delivery

c

Rational
Offerings

Third party
Offerings

Business Partner
Offerings

Storage

Collaboration

QueryDiscovery

Administration: Users,
projects, process

Best Practice Processes

Performance
Management

Your
existing

capabilities

Requirements
Definition &
Management

Configuration
& Change

Management
Build

Management Quality
Management 3rd-Party

Jazz
Capabilities

Future
IBM

Capabilities

Presentation:
Mashups

Storage

Collaboration

QueryDiscovery

Administration: Users,
projects, process

Best Practice ProcessesBest Practice Processes

Performance
Management

Your
existing

capabilities

Requirements
Definition &
Management

Configuration
& Change

Management
Build

Management Quality
Management 3rd-Party

Jazz
Capabilities

Future
IBM

Capabilities

Presentation:
Mashups

Jazz is a platform for transforming how people

work together to deliver greater value and

performance from their software investments.

4

© 2009 IBM Corporation5

Deliver real-time insight
into programs, projects
and resource utilization.

Deliver transparency of
teams and projects for
continuous, context-

sensitive collaboration

Collaborate Report

Automate non-creative
tasks with automated

processes and workflows

Automate

Essential attributes of Jazz

Improve knowledge and practice maturity with an
environment that develops individual and team talent.

5

© 2009 IBM Corporation6

A collaborative team environment

Team Awareness

Shows team members and
their online status

Shows what they are
working on

6

Collaborate in
context

Team Central

- News & events
- Build status
- What’s being worked on
- Changes

Configurable (RSS feeds)

© 2009 IBM Corporation77

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Are we there yet?

Resources

Transforming our Software Delivery

© 2009 IBM Corporation8

Team Concert for System z delivered in 2008
version 1

Eclipse and Eclipse-
based products

Web 2.0

MS Visual Studio (beta)

Client Integrations Extensions for System z

z/OS or Linux on System z deployment supporting server consolidation
for distributed deployment

DB2 for System z and WebSphere for z/OS support

Team collaboration and governance while continuing existing SCM for

host artifacts.

Rational Team Concert

For System z

JAZZ TEAM SERVER

Day One Productivity

Right-size Governance

Collaborate in Context

Open and Extensible
Architecture

Collaboration

Clarity

Continuity

Community

c

Rational Team Concert for System z
brings together diverse teams allowing
them to work together to build solutions

8

© 2009 IBM Corporation9

Team Concert for System z developed during 2009
version 2

Eclipse and Eclipse-
based products

Web 2.0

Microsoft Visual Studio

Client Integrations Extensions for System z

Native z/OS build support

Integration with Rational Developer for System z

Integrated SCM solution for z/OS and distributed assets

Flexible Deployment Platforms - z/OS, Linux on System z, or distributed

Rational Team Concert

For System z

JAZZ TEAM SERVER

Day One Productivity

Right-size Governance

Collaborate in Context

Open and Extensible
Architecture

Collaboration

Clarity

Continuity

Community

Available today

c

Rational Team Concert for System z
brings together diverse teams allowing
them to work together to build solutions

9

© 2009 IBM Corporation1010

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Next steps

Resources

Transforming our Software Delivery

© 2009 IBM Corporation11

The sun never set on RTCz development

Development
Beijing, China

Development
Pornichet, France

Mgt,Development
Raleigh, US

UA
San Jose, US

Development
Austin, US

Development
Paris, France

Development
Perth, Australia

Research
Haïfa, Israel

Rational Team
Concert

SCM

Work Items

Build

Self hosting Jazz
server on z/OS

11

© 2009 IBM Corporation12

Tooling RTCz development using Team Concert

• RTCz development project area
– Self hosting on System z

• Access from Jazz.net

– ‘RTCz for System z Project’

– Based on the Scrum template

• Geographically Distributed
Development

– 3 main Scrum teams

• RTP (Raleigh, US)

• FASL (France & Australia)

• BF (Austin, US)

• 2 parallel development lines
– No maintance

– Main development

• Release v2.0

• Post v2 development

– Product Delivery

12

© 2009 IBM Corporation13

RTCz Scrum process

• RTCz development process

– Based on the standard Scrum process
template

• Minor process adaptations

– New role

• PMC: Project Management Council
(based on Stakeholder role)

– New Minutes work item

• Track meeting minutes

– Updated permissions

• PMC can update Iteration Plans

• Limited operations for externals

– New automatic tasks when joining a team

• [Joining a Team] Update your
calendar with your Scheduled
Absences

• [Joining a Team] Update your Work
Environment

13

© 2009 IBM Corporation14

RTCz stakeholder roles, aka ‘Chickens’

� ‘Chickens’ are not part of the actual Scrum

process, but they must be engaged and

provide feedback.

• Project Management Council (PMC)

– Stakeholders: Danny, David

– PMC: Pamela, Teresa, Sandra, Guy, Alex,
Robin, Jean-Yves

– Architects: Rosalind, Nicolas

• Product Delivery

– Stakeholders: Danny, David

– PMC: Pamela, Rosalind, Teresa, Sandra,
Nicolas

• Light adaptation from standard Scrum

– Product Owner, Scrum Masters & Architects are
also ‘Chickens’ as part of the PMC

14

© 2009 IBM Corporation15

RTCz development roles, aka ‘Pigs’

� ‘Pigs’ are the ones commited to the project and the Scrum process.

• RTCz overall project
– Project Owner: Guy

• 3 main development Scrum teams
– RTP, Raleigh

• ScrumMaster: Robin

• Team Members: Alex, Andrew, Bruce, Daniel,

Hung, John, Matt, Steve, Tami

– FASL, France & Australia
• ScrumMaster: Jean-Yves

• Team Members: Valérie, Liam, Nicolas,

Jean-Bernard, Pierre, Pascal, Xavier

– BF, Austin
• ScrumMaster: Robin

• Team Members: Charles, Franck, Leigh, Joseph, Su Juan, Tim, Wei

• User Assistance - Documentation
– Team Members: Stephanie, Jocelyn, Patrick

• Bidi, SUPA research
– Team Members: Adir, Gregory, Heba, Mohamed, Ramy, Semion,

Mordechai, Uri

Scrum team in action

15

© 2009 IBM Corporation16

A day in the life... of a Scrum team member

• Always starts with a daily scrum

• Think!... Document ... Write JUnit testcases... Code... Test

1. Check My Work

2. API First; improve the collaboration with your clients

3. Test Driven Development (TDD); solidify your code

4. Update work items; let other members know what you’ve done

• Deliver code to the Team Stream

– Test team integration; now your component is not alone

• Deliver code to the Integration Stream

– Daily & Weekly builds

– Test project integration; we now have a product

– Control JUnit testcases execution; check the overall quality

• Recurrent activities

– Actively participate in design meetings; across Scrum teams

– Regular JUnit jam sessions; leverage the know-how within the teams

– Scrum of Scrums meetings when appropriate; keep the rhythm

16

© 2009 IBM Corporation17

RTCz development rhythm

• Project timeline
– Started Jan 2009

– All packages were available on Oct 8,
2009

• Monthly Sprints

• 9 iterations
– Initial iteration (training, envt set up,...)

– 5 development iterations

• Included FVTs

– End-game & Cleanup

• Includes SVTs, TVTs, GVTs

• 3 phases in all development

iterations
– Planning (2-3 days)

– Development

– Stabilization (3-4 days)

17

© 2009 IBM Corporation18

Sprint planning detailed

• First days of each Sprint

– Get Sprint directions from Product
Owner

– Analyze Stories with the Architects

• All Scrum team members are

involved

• Check time budget

– Verify absences in RTCz

• From Product Backlog...

– Query Work items

– Team members try to fully understand
Stories with the help of the Architects

– Give estimates using the Planning
Poker technique

• ...To Iteration Plan

– Fill Sprint backlog with selected Stories
based on team velocity and priorities

18

© 2009 IBM Corporation1919

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Are we there yet?

Resources

Transforming our Software Delivery

© 2009 IBM Corporation20

Tests coordinated using Rational Quality Manager (RQM)

• All defined in RQM

– FVT, SVT & Performance Test
Plans

• Defined by developers

– During the Stabilization phase

• Executed by all members

– Developers, release engineer, ...,
and managers included

– Test execution records

• Creating & linking Defects on

failure

• Formal reviews

– Test cases approvals by Product
Owner & ScrumMasters

• Metrics & charts on quality

presented at Sprint
stakeholders meetings

Test case
design

Execution
report

20

© 2009 IBM Corporation21

Collaborate using Work items and Plans

Instant collaboration /
share context

Various levels
of work
planification

Discuss/exchange
work with
members

21

© 2009 IBM Corporation22

Share & build source code using RTCz

Integration
Streams and
flows

Build definitions

Source code
Components

Pending updates

22

© 2009 IBM Corporation23

Check the project status and health
Burndown
charts

Various
project health
dashboards

Team
communication

23

© 2009 IBM Corporation2424

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Are we there yet?

Resources

Transforming our Software Delivery

© 2009 IBM Corporation25

Lessons learned (1/4): Getting ready for completion

• Need to spend more time initially to better understand goals
– Better shape the product backlog

– Developers need a good understanding of the architecture and goals

– Need at least a sprint to design before starting development Sprints

• Short development time (5 Sprints) is a difficult challenge

• Self hosting is not frictionless
– Many servers (self host, dev, build & test)

– Keeping up with upgrades from various levels can be painful

• Scrum teams made good progress
– Velocity increased over time

– Ended to get a good understanding of the overall architecture

– Good vision of progress, facilitated with RTCz dashboards

• Language is a barrier to communication
– Various levels of English & French

– A lot of misunderstandings due to the language & cultural differences

– Communication improved between Scrum teams

• Keep the rhythm
– Plans and dates were strictly followed, content evolved

– Show/demonstrate regulary what has been accomplished

25

© 2009 IBM Corporation26

Lessons learned (2/4): Agile is fragile

• Overlapping Sprints was a big mistake
– Planning Sprint n+1 during Stabilization of Sprint n

– Planning sessions not based on Stakeholders feedback

– Planning is using half of developers’ brain when the other half is busy fixing bugs

• Updates to plan during Sprint
– Members fully booked resulted in overbooking

– External pressure due to product integration (RDz, RTC)

– Unplanned activities (like SMP/E packaging)

• Poor Scrum support until late in development cycle
– Changes made during v2 helped

• Agile acceptance can vary amongst members
– Well accepted by most developers, some simply ignored it

– Managers tend to go back to what they’re used to when they are under pressure

– Technical resources who are not developers (release engineers, admins,...) have problem to

find a space in a development-oriented model

– Most team members didn’t see the Retrospectives as an opportunity to adapt

– Don’t hesitate to use the Product Owner as a shield

• Keep fit
– Loss of rhythm makes it hard to restart

26

© 2009 IBM Corporation27

Lessons learned (3/4): Time is valuable

• No time to step back & think, or simply take a break
– Always running due to the Scrum rhythm

– Want to put a maximum in a release, probably too much...

• We were too greedy

– Lost Think Fridays; not prepared for the future

• Try to identify Scrum smells early
– Confidence in agile is fragile; don’t over-estimate it

– Difficult to operate later; leaves scars on members

– Agile training is needed for both developers and managers

– Easy to go back to what we know best when times are hard

• Reduced paperwork using RTCz & RQM
– RTCz & RQM, if used correctly by members can reduce manual/verbal reporting

– Project health was more accurate with time and members tool knowledge

– Development knowledge base; track development & architectural choices (what & why)

• Take time to reassess backlog often
– Never have time to do everything; do the right thing & do it right

27

© 2009 IBM Corporation28

Lessons learned (4/4): Development is a team sport

• RTCz team across multiple geos
– 17 time zones; From West Australia to the US West coast

– Hard to find convenient times to set up meetings

– Extra long working hours or split days

– Reduced sleeping time (early mornings or late evenings)

– It takes more time to do things in GDD than in a single location

• Components by location
– Sharing components across locations make them hard to build

– Inter-component collaboration creates development frictions

– RTCz being at the centre of the development helped sharing code and knowledge

• Teams by location
– A team must be formed from at least 2 people at one location

– People need help from others

– We never actually met; hard to know each other

– We gained experience in Globally Distributed Development

• Team members diffidence
– Generations can collide

– Important messages seem to be shared out of official Scrum ceremonies

– Only a few critics come out of the Retrospectives

28

© 2009 IBM Corporation2929

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Are we there yet?

Resources

Transforming our Software Delivery

© 2009 IBM Corporation30

Are we there yet?

• We’ve made it; RTCz v2.0.0.1 is out there for you
– We published 3 betas to jazz.net & RTCz was available on Oct 8

– We set a Scrum project & applied most agile principles & Scrum

• Now, based on our first Scrum experience we can work on RTCz v3
– RTCz development joined core RTC and moved to Jazz.net last summer

– Plans already published to jazz.net; take a look at them, we need your feedback

• More integration and collaboration with external teams expected
– Jazz, RTC, RDz, RTCp, RDp, ... with more friction expected too ;-)

The agile adoption problems we’re facing today, our customers will have to face

• We realize this is not as easy as it seems, so we are sharing our
experience on Drinking our own champagne

30

© 2009 IBM Corporation3131

Agenda

Back to the Jazz basics

Team Concert for System z

One world, one agile team

One tool to rule them all

Lessons learned

Are we there yet?

Resources

Transforming our Software Delivery

© 2009 IBM Corporation32

Resources

• Agile/Scrum
– Agile Manifesto: http://agilemanifesto.org/

– Wikipedia: http://en.wikipedia.org/wiki/Agile_software_development

– Wikipedia: http://en.wikipedia.org/wiki/Scrum

– Glossary of Scrum terms: http://www.scrumalliance.org/articles/39#1127

– Scrum Alliance: http://www.scrumalliance.org/

– Scrum Community: https://scrumcommunity.pbwiki.com/

• IBM Rational Team Concert for System z
– Jazz platform: http://jazz.net

– Product information: http://www-01.ibm.com/software/awdtools/rtcz/

– Articles & papers:

• In tune with IBM Jazz and IBM Rational Team Concert entreprise development tools

• Easier, faster collaborative development by globally distributed teams

32

Images & graphics

• "Team Australia" image (slide 15) was obtained under the terms of the Creative Commons Attribution 2.0 License: http://creativecommons.org/licenses/by/2.0/legalcode - Original Author is "BobTheCorkDwarf"
[http://www.flickr.com/photos/bohane/]

• "final 1500m" image (slide 25) was obtained under under the Creative Commons Attribution 3.0 Unported License: http://creativecommons.org/licenses/by/3.0/legalcode - Original Author is "Albertus teolog"
[http://commons.wikimedia.org/wiki/User:Albertus_teolog]

• Clip Art images on slides 16, 26 and 27 are copyright (c) Microsoft Corporation. No right to license or distribute these images is granted.

© 2009 IBM Corporation33

© Copyright IBM Corporation 2009. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied.
IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties
or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials to IBM products, programs,
or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on
market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, and other IBM products and services are
trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

• Learn more at:

• IBM Rational software

• IBM Rational Software Delivery Platform

• Process and portfolio management

• Change and release management

• Quality management

• Architecture management

• Rational trial downloads

• Leading Innovation Web site

• developerWorks Rational

• IBM Rational TV

• IBM Business Partners

• IBM Rational Case Studies

